
Application Security Verification
Standard

Version 5.0.0

May 2025

Application Security Verification Standard May 2025

Contents

Frontispiece 7
About the Standard . 7
Copyright and License . 7
Project Leads . 7
Working Group . 7
Other Major Contributors . 7
Other Contributors and Reviewers . 8

Preface 8
Introduction . 8
Principles behind version 5.0 . 8
Looking ahead . 9

What is the ASVS? 9
Scope of the ASVS . 9

Application . 10
Security . 10
Verification . 10
Standard . 10
Requirement . 11
Documented security decisions . 11

Application Security Verification Levels . 12
Level evaluation . 13
Level 1 . 13
Level 2 . 13
Level 3 . 14
Which level to achieve . 14

How to use the ASVS . 14
The structure of the ASVS . 14
Release strategy . 14
Flexibility with the ASVS . 15
How to Reference ASVS Requirements . 15
Forking the ASVS . 16

Use cases for the ASVS . 16
As Detailed Security Architecture Guidance . 16
As a Specialized Secure Coding Reference . 16
As a Guide for Automated Unit and Integration Tests 17
For Secure Development Training . 17
As a Framework for Guiding the Procurement of Secure Software 17

Applying ASVS in Practice . 17

1

Application Security Verification Standard May 2025

Assessment and Certification 18
OWASP’s Stance on ASVS Certifications and Trust Marks 18
How to Verify ASVS Compliance . 18

Verification reporting . 18
Scope of Verification . 18
Verification Mechanisms . 19

Changes Compared to v4.x 20
Introduction . 20
Requirement Philosophy . 20

Scope and Focus . 20
Emphasis on Security Goals Over Mechanisms . 20
Documented Security Decisions . 20

Structural Changes and New Chapters . 21
Removal of Direct Mappings to Other Standards . 21

Reduced Coupling with NIST Digital Identity Guidelines 22
Moving Away from CommonWeakness Enumeration (CWE) 22

Rethinking Level Definitions . 22
Easier Entry Level . 22
The Fallacy of Testability . 22
Not Just About Risk . 23

V1 Encoding and Sanitization 23
Control Objective . 23
V1.1 Encoding and Sanitization Architecture . 23
V1.2 Injection Prevention . 24
V1.3 Sanitization . 25
V1.4 Memory, String, and Unmanaged Code . 27
V1.5 Safe Deserialization . 27
References . 28

V2 Validation and Business Logic 28
Control Objective . 28
V2.1 Validation and Business Logic Documentation . 29
V2.2 Input Validation . 29
V2.3 Business Logic Security . 30
V2.4 Anti‑automation . 31
References . 31

V3Web Frontend Security 32
Control Objective . 32
V3.1 Web Frontend Security Documentation . 32

2

Application Security Verification Standard May 2025

V3.2 Unintended Content Interpretation . 32
V3.3 Cookie Setup . 33
V3.4 Browser Security Mechanism Headers . 33
V3.5 Browser Origin Separation . 35
V3.6 External Resource Integrity . 36
V3.7 Other Browser Security Considerations . 37
References . 37

V4 API andWeb Service 38
Control Objective . 38
V4.1 Generic Web Service Security . 38
V4.2 HTTP Message Structure Validation . 39
V4.3 GraphQL . 40
V4.4 WebSocket . 40
References . 41

V5 File Handling 41
Control Objective . 41
V5.1 File Handling Documentation . 41
V5.2 File Upload and Content . 42
V5.3 File Storage . 42
V5.4 File Download . 43
References . 43

V6 Authentication 44
Control Objective . 44
V6.1 Authentication Documentation . 44
V6.2 Password Security . 45
V6.3 General Authentication Security . 46
V6.4 Authentication Factor Lifecycle and Recovery . 47
V6.5 General Multi‑factor authentication requirements 48
V6.6 Out‑of‑Band authentication mechanisms . 49
V6.7 Cryptographic authentication mechanism . 50
V6.8 Authentication with an Identity Provider . 51
References . 52

V7 Session Management 52
Control Objective . 52
V7.1 Session Management Documentation . 53
V7.2 Fundamental Session Management Security . 53
V7.3 Session Timeout . 54
V7.4 Session Termination . 54

3

Application Security Verification Standard May 2025

V7.5 Defenses Against Session Abuse . 55
V7.6 Federated Re‑authentication . 56
References . 56

V8 Authorization 56
Control Objective . 56
V8.1 Authorization Documentation . 57
V8.2 General Authorization Design . 57
V8.3 Operation Level Authorization . 58
V8.4 Other Authorization Considerations . 58
References . 59

V9 Self‑contained Tokens 59
Control Objective . 59
V9.1 Token source and integrity . 59
V9.2 Token content . 60
References . 61

V10 OAuth and OIDC 61
Control Objective . 61
V10.1 Generic OAuth and OIDC Security . 63
V10.2 OAuth Client . 63
V10.3 OAuth Resource Server . 64
V10.4 OAuth Authorization Server . 65
V10.5 OIDC Client . 67
V10.6 OpenID Provider . 68
V10.7 Consent Management . 68
References . 69

V11 Cryptography 70
Control Objective . 70
V11.1 Cryptographic Inventory and Documentation . 70
V11.2 Secure Cryptography Implementation . 71
V11.3 Encryption Algorithms . 72
V11.4 Hashing and Hash‑based Functions . 73
V11.5 Random Values . 73
V11.6 Public Key Cryptography . 74
V11.7 In‑Use Data Cryptography . 74
References . 75

V12 Secure Communication 75
Control Objective . 75
V12.1 General TLS Security Guidance . 75

4

Application Security Verification Standard May 2025

V12.2 HTTPS Communication with External Facing Services 76
V12.3 General Service to Service Communication Security 76
References . 77

V13 Configuration 77
Control Objective . 77
V13.1 Configuration Documentation . 78
V13.2 Backend Communication Configuration . 78
V13.3 Secret Management . 79
V13.4 Unintended Information Leakage . 80
References . 81

V14 Data Protection 81
Control Objective . 81
V14.1 Data Protection Documentation . 81
V14.2 General Data Protection . 82
V14.3 Client‑side Data Protection . 83
References . 84

V15 Secure Coding and Architecture 84
Control Objective . 84
V15.1 Secure Coding and Architecture Documentation 84
V15.2 Security Architecture and Dependencies . 85
V15.3 Defensive Coding . 86
V15.4 Safe Concurrency . 87
References . 88

V16 Security Logging and Error Handling 88
Control Objective . 88
V16.1 Security Logging Documentation . 89
V16.2 General Logging . 89
V16.3 Security Events . 90
V16.4 Log Protection . 91
V16.5 Error Handling . 91
References . 92

V17WebRTC 92
Control Objective . 92
V17.1 TURN Server . 93
V17.2 Media . 93
V17.3 Signaling . 95
References . 95

5

Application Security Verification Standard May 2025

Appendix A: Glossary 96

Appendix B: References 102
OWASP Core Projects . 102
OWASP Cheat Sheet Series project . 102
Mobile Security Related Projects . 102
OWASP Internet of Things related projects . 102
OWASP Serverless projects . 102
Others . 102

Appendix C: Cryptography Standards 103
Cryptographic Inventory and Documentation . 103
Equivalent Strengths of Cryptographic Parameters . 104
Random Values . 104
Cipher Algorithms . 105

AES Cipher Modes . 106
Key Wrapping . 107
Authenticated Encryption . 107

Hash Functions . 108
Hash Functions for General Use Cases . 108
Hash Functions for Password Storage . 111

Key Derivation Functions (KDFs) . 112
General Key Derivation Functions . 112
Password‑based Key Derivation Functions . 112

Key Exchange Mechanisms . 113
KEX Schemes . 113
Diffie‑Hellman groups . 113

Message Authentication Codes (MAC) . 114
Digital Signatures . 115
Post‑Quantum Encryption Standards . 116

Appendix D: Recommendations 116
Introduction . 116
Recommended, in‑scope mechanisms . 116
Software Security principles . 117
Software Security processes . 117

Appendix E ‑ Contributors 118

6

Application Security Verification Standard May 2025

Frontispiece

About the Standard

The Application Security Verification Standard is a list of application security requirements that ar‑
chitects, developers, testers, security professionals, tool vendors, and consumers can use to define,
build, test, and verify secure applications.

Copyright and License

Version 5.0.0, May 2025

Figure 1: license

Copyright © 2008‑2025 The OWASP Foundation.

This document is released under the Creative Commons Attribution‑ShareAlike 4.0 International Li‑
cense.

For any reuse or distribution, you must clearly communicate the license terms of this work to oth‑
ers.

Project Leads

Elar Lang Josh C Grossman

JimManico Daniel Cuthbert

Working Group

Tobias Ahnoff Ralph Andalis Ryan Armstrong Gabriel Corona

Meghan Jacquot Shanni Prutchi Iman Sharafaldin Eden Yardeni

Other Major Contributors

Sjoerd Langkemper Isaac Lewis

7

https://creativecommons.org/licenses/by-sa/4.0/
https://creativecommons.org/licenses/by-sa/4.0/

Application Security Verification Standard May 2025

Mark Carney Sandro Gauci

Other Contributors and Reviewers

We have included a list of the other contributors in Appendix E.

If a credit is missing from the 5.x credit list, please log a ticket at GitHub to be recognized in future
5.x updates.

TheApplication Security Verification Standard builds on thework of those involved inASVS 1.0 (2008)
through 4.0 (2019). Much of the structure and many of the verification items that remain in ASVS to‑
day were originally written by Andrew van der Stock, Mike Boberski, Jeff Williams, and Dave Wich‑
ers, among numerous other contributors. Thank you to everyone who has contributed in the past.
For a comprehensive list of earlier contributors, please consult each prior version.

Preface

Welcome to the Application Security Verification Standard (ASVS) Version 5.0.

Introduction

Originally launched in 2008 through a global community collaboration, the ASVS defines a compre‑
hensive set of security requirements for designing, developing, and testingmodernweb applications
and services.

Following the release of ASVS 4.0 in 2019 and itsminor update (v4.0.3) in 2021, Version 5.0 represents
a significant milestone—modernized to reflect the latest advances in software security.

ASVS 5.0 is the result of extensive contributions from project leaders, working group members, and
the wider OWASP community to update and improve this important standard.

Principles behind version 5.0

This major revision has been developed with several key principles in mind:

• Refined Scope and Focus: This version of the standard has been designed to align more di‑
rectly with the foundational pillars in its name: Application, Security, Verification, and Stan‑
dard. Requirements have been rewritten to emphasize the prevention of security flaws rather
thanmandating specific technical implementations. Requirement texts are intended to be self‑
explanatory, explaining why they exist.

8

Application Security Verification Standard May 2025

• Support for Documented Security Decisions: ASVS 5.0 introduces requirements for document‑
ing key security decisions. This enhances traceability and supports context‑sensitive imple‑
mentations, allowing organizations to tailor their security posture to their specific needs and
risks.

• Updated Levels: While ASVS retains its three‑tier model, the level definitions have evolved to
make the ASVS easier to adopt. Level 1 is designed as the initial step to adopting the ASVS, pro‑
viding the first layer of defense. Level 2 represents a comprehensive view of standard security
practices, and Level 3 addresses advanced, high‑assurance requirements.

• Restructured andExpandedContent: ASVS 5.0 includes approximately 350 requirements across
17 chapters. Chapters have been reorganized for clarity and usability. A two‑way mapping
between v4.0 and v5.0 is provided to facilitate migration.

Looking ahead

Just as securing an application is never truly finished, neither is the ASVS. Although Version 5.0 is
a major release, development continues. This release allows the wider community to benefit from
the improvements and additions which have been accumulated but also lays the groundwork for
future enhancements. This could include community‑driven efforts to create implementation and
verification guidance built on top of the core requirement set.

ASVS 5.0 is designed to serve as a reliable foundation for secure software development. The commu‑
nity is invited to adopt, contribute, and build upon this standard to collectively advance the state of
application security.

What is the ASVS?

The Application Security Verification Standard (ASVS) defines security requirements for web appli‑
cations and services, and it is a valuable resource for anyone aiming to design, develop, andmaintain
secure applications or evaluate their security.

This chapter outlines the essential aspects of using the ASVS, including its scope, the structure of its
priority‑based levels, and the primary use cases for the standard.

Scope of the ASVS

The scope of the ASVS is defined by its name: Application, Security, Verification, and Standard. It es‑
tablishes which requirements are included or excluded, with the overarching goal of identifying the
security principles that must be achieved. The scope also considers documentation requirements,
which serve as the foundation for implementation requirements.

9

Application Security Verification Standard May 2025

There is no such thing as scope for attackers. Therefore, ASVS requirements should be evaluated
alongside guidance for other aspects of the application lifecycle, including CI/CD processes, hosting,
and operational activities.

Application

ASVS defines an “application”as the software product being developed, into which security controls
must be integrated. ASVS does not prescribe development lifecycle activities or dictate how the ap‑
plication should be built via a CI/CD pipeline; instead, it specifies the security outcomes that must
be achieved within the product itself.

Components that serve, modify, or validate HTTP traffic, such as Web Application Firewalls (WAFs),
load balancers, or proxies, may be considered part of the application for those specific purposes,
as some security controls depend directly on them or can be implemented through them. These
components should be considered for requirements related to cached responses, rate limiting, or
restricting incoming and outgoing connections based on source and destination.

Conversely, ASVS generally excludes requirements that are not directly relevant to the application or
where configuration is outside the application’s responsibility. For example, DNS issues are typically
managed by a separate team or function.

Similarly, while the application is responsible for how it consumes input and produces output, if an
external process interacts with the application or its data, it is considered out of scope for ASVS. For
instance, backing up the application or its data is usually the responsibility of an external process
and is not controlled by the application or its developers.

Security

Every requirement must have a demonstrable impact on security. The absence of a requirement
must result in a less secure application, and implementing the requirement must reduce either the
likelihood or the impact of a security risk.

All other considerations, such as functional aspects, code style, or policy requirements, are out of
scope.

Verification

The requirement must be verifiable, and the verification must result in a “fail”or “pass”decision.

Standard

The ASVS is designed to be a collection of security requirements to be implemented to comply with
the standard. This means that requirements are limited to defining the security goal to achieve that.
Other related information can be built on top of ASVS or linked via mappings.

10

Application Security Verification Standard May 2025

Specifically, OWASP has many projects, and the ASVS deliberately avoids overlapping with the con‑
tent in other projects. For example, developers may have a question, “how do I implement a par‑
ticular requirement in my particular technology or environment,”and this should be covered by the
Cheat Sheet Series project. Verifiers may have a question “how do I test this requirement in this
environment,”and this should be covered by the Web Security Testing Guide project.

Whilst the ASVS is not just intended for security experts to use, it does expect the reader to have
technical knowledge to understand the content or the ability to research particular concepts.

Requirement

Theword requirement is used specifically in the ASVS as it describeswhatmust be achieved to satisfy
it. The ASVS only contains requirements (must) and does not contain recommendations (should) as
the main condition.

In other words, recommendations, whether they are just one of many possible options to solve a
problem or code style considerations, do not satisfy the definition to be a requirement.

ASVS requirements are intended to address specific security principles without being too implemen‑
tation or technology‑specific, at the same time, being self‑explanatory as to why they exist. This also
means that requirements are not built around a particular verificationmethod or implementation.

Documented security decisions

In software security, planning security design and the mechanisms to be used early on will lead to a
more consistent and reliable implementation in the finished product or feature.

Additionally, for certain requirements, implementation will be complicated and very specific to an
application’s needs. Common examples include permissions, input validation, and protective con‑
trols around different levels of sensitive data.

To account for this, rather than sweeping statements like “all data must be encrypted”or trying to
cover every possible use case in a requirement, documentation requirements were included which
mandate that the application developer’s approach and configuration to these sorts of controls must
be documented. This can then be reviewed for appropriateness and then the actual implementa‑
tion can be compared to the documentation to assess whether the implementation matches expec‑
tations.

These requirements are intended to document the decisions which the organization developing the
application has taken regarding how to implement certain security requirements.

Documentation requirements are always in the first section of a chapter (although not every chapter
has them) and always have a related implementation requirement where the decisions that are doc‑
umented should actually be put into place. The point here is that verifying that the documentation
is in place and that the actual implementation are two separate activities.

11

Application Security Verification Standard May 2025

There are two key drivers for including these requirements. The first driver is that a security require‑
ment will often involve enforcing rules e.g., what kind of file types are allowed to be uploaded, what
business controls should be enforced, what are the allowed characters for a particular field. These
rules will differ for every application, and therefore, the ASVS cannot prescriptively define what they
should be, nor will a cheat sheet ormore detailed response help in this case. Similarly, without these
decisions being documented, it will not be possible to perform verification of the requirements that
implement these decisions.

The second driver is that for certain requirements, it is important to provide an application devel‑
opment with flexibility regarding how to address particular security challenges. For example, in
previous ASVS versions, session timeout rules were very prescriptive. Practically speaking, many
applications, especially those that are consumer‑facing, have much more relaxed rules and prefer
to implement other mitigation controls instead. Documentation requirements, therefore, explicitly
allow for flexibility around this.

Clearly, it is not expected that individual developers will bemaking and documenting these decisions
but rather the organization as a whole will be taking those decisions and making sure that they are
communicated to developers who then make sure to follow them.

Providing developers with specifications and designs for new features and functionality is a standard
part of software development. Similarly, developers are expected to use common components and
user interface mechanisms rather than just making their own decisions each time. As such, extend‑
ing this to security should not be seen as surprising or controversial.

There is also flexibility around how to achieve this. Security decisions might be documented in a
literal document, which developers are expected to refer to. Alternatively, security decisions could
be documented and implemented in a common code library that all developers aremandated to use.
In both cases, the desired result is achieved.

Application Security Verification Levels

The ASVS defines three security verification levels, with each level increasing in depth and complex‑
ity. The general aim is for organizations to startwith thefirst level to address themost critical security
concerns, and thenmove up to the higher levels according to the organization and application needs.
Levels may be presented as L1, L2, and L3 in the document and in requirement texts.

Each ASVS level indicates the security requirements that are required to achieve from that level, with
the higher remaining level requirements as recommendations.

In order to avoid duplicate requirements or requirements that are no longer relevant at higher levels,
some requirements apply to a particular level but havemore stringent conditions for higher levels.

12

Application Security Verification Standard May 2025

Level evaluation

Levels are definedbypriority‑based evaluation of each requirement based on experience implement‑
ing and testing security requirements. Themain focus is on comparing risk reduction with the effort
to implement the requirement. Another key factor is to keep a low barrier to entry.

Risk reduction considers the extent towhich the requirement reduces the level of security riskwithin
the application, taking into account the classic Confidentiality, Integrity, and Availability impact fac‑
tors as well as considering whether this is a primary layer of defense or whether it would be consid‑
ered defense in depth.

The rigorous discussions around both the criteria and the leveling decisions have resulted in an al‑
location which should hold true for the vast majority of cases, whilst accepting that it may not be a
100% fit for every situation. This means that in certain cases, organizations may wish to prioritize
requirements from a higher level earlier on based on their own specific risk considerations.

The types of requirements in each level could be characterized as follows.

Level 1

This level contains the minimum requirements to consider when securing an application and rep‑
resents a critical starting point. This level contains around 20% of the ASVS requirements. The goal
for this level is to have as few requirements as possible, to decrease the barrier to entry.

These requirements are generally critical or basic, first‑layer of defense requirements for preventing
common attacks that do not require other vulnerabilities or preconditions to be exploitable.

In addition to the first layer of defense requirements, some requirements have less of an impact at
higher levels, such as requirements related to passwords. Those are more important for Level 1, as
from higher levels, the multi‑factor authentication requirements become relevant.

Level 1 is not necessarily penetration testable by an external tester without internal access to docu‑
mentation or code (such as “black box”testing), although the lower number of requirements should
make it easier to verify.

Level 2

Most applications should be striving to achieve this level of security. Around 50%of the requirements
in the ASVS are L2meaning that an application needs to implement around 70% of the requirements
in the ASVS (all of the L1 and L2 requirements) in order to comply with L2.

These requirements generally relate to either less common attacks or more complicated protections
against common attacks. They may still be a first layer of defense, or they may require certain pre‑
conditions for the attack to be successful.

13

Application Security Verification Standard May 2025

Level 3

This level should be the goal for applications looking to demonstrate the highest levels of security
and provides the final ~30% of requirements to comply with.

Requirements in this section are generally either defense‑in‑depth mechanisms or other useful but
hard‑to‑implement controls.

Which level to achieve

The priority‑based levels are intended to provide a reflection of the application security maturity
of the organization and the application. Rather than the ASVS prescriptively stating what level an
application should be at, an organization should analyze its risks and decide what level it believes it
should be at, depending on the sensitivity of the application and of course, the expectations of the
application’s users.

For example, an early‑stage startup that is only collecting limited sensitive data may decide to focus
on Level 1 for its initial security goals, but a bank may have difficulty justifying anything less than
Level 3 to its customers for its online banking application.

How to use the ASVS

The structure of the ASVS

The ASVS is made up of a total of around 350 requirements which are divided into 17 chapters, each
of which is further divided into sections.

The aim of the chapter and section division is to simplify choosing or filtering out chapters and sec‑
tions based on the what is relevant for the application. For example, for a machine‑to‑machine API,
the requirements in chapter V3 related to web frontends will not be relevant. If there is no use of
OAuth or WebRTC, then those chapters can be ignored as well.

Release strategy

ASVS releases follow the pattern “Major.Minor.Patch”and the numbers provide information on what
has changed within the release. In a major release, the first number will change, in a minor release,
the second number will change, and in a patch release, the third number will change.

• Major release ‑ Full reorganization, almost everything may have changed, including require‑
ment numbers. Reevaluation for compliance will be necessary (for example, 4.0.3 ‑> 5.0.0).

• Minor release ‑ Requirements may be added or removed, but overall numbering will stay the
same. Reevaluation for compliance will be necessary, but should be easier (for example, 5.0.0
‑> 5.1.0).

14

Application Security Verification Standard May 2025

• Patch release ‑ Requirements may be removed (for example, if they are duplicates or outdated)
or made less stringent, but an application that complied with the previous release will comply
with the patch release as well (for example, 5.0.0 ‑> 5.0.1).

The above specifically relates to the requirements in theASVS. Changes to surrounding text and other
content such as the appendices will not be considered to be a breaking change.

Flexibility with the ASVS

Several of the points described above, such as documentation requirements and the levels mecha‑
nism, provide the ability to use the ASVS in a more flexible and organization‑specific way.

Additionally, organizations are strongly encouraged to create an organization‑ or domain‑specific
fork that adjusts requirements based on the specific characteristics and risk levels of their applica‑
tions. However, it is important to maintain traceability so that passing requirement 4.1.1 means the
same across all versions.

Ideally, each organization should create its own tailored ASVS, omitting irrelevant sections (e.g.,
GraphQL, WebSockets, SOAP, if unused). An organization‑specific ASVS version or supplement is
also a good place to provide organization‑specific implementation guidance, detailing libraries or
resources to use when complying with requirements.

How to Reference ASVS Requirements

Each requirement has an identifier in the format <chapter>.<section>.<requirement>, where each
element is a number. For example, 1.11.3.

• The <chapter> value corresponds to the chapter from which the requirement comes; for ex‑
ample, all 1.#.# requirements are from the ‘Encoding and Sanitization’chapter.

• The <section> value corresponds to the section within that chapter where the requirement
appears, for example: all 1.2.# requirements are in the ‘Injection Prevention’section of the
‘Encoding and Sanitization’chapter.

• The <requirement> value identifies the specific requirement within the chapter and section,
for example, 1.2.5 which as of version 5.0.0 of this standard is:

Verify that the application protects against OS command injection and that operating system
calls use parameterized OS queries or use contextual command line output encoding.

Since the identifiers may change between versions of the standard, it is preferable for other docu‑
ments, reports, or tools touse the following format: v<version>-<chapter>.<section>.<requirement>,
where: ‘version’is the ASVS version tag. For example: v5.0.0-1.2.5 would be understood to mean
specifically the 5th requirement in the ‘Injection Prevention’section of the ‘Encoding and Sanitiza‑
tion’chapter fromversion5.0.0. (This couldbe summarized asv<version>-<requirement_identifier>.)

15

Application Security Verification Standard May 2025

Note: The v preceding the version number in the format should always be lowercase.

If identifiers are used without including the v<version> element then they should be assumed to
refer to the latest Application Security Verification Standard content. As the standard grows and
changes this becomes problematic, which is why writers or developers should include the version
element.

ASVS requirement lists are made available in CSV, JSON, and other formats which may be useful for
reference or programmatic use.

Forking the ASVS

Organizations can benefit from adopting ASVS by choosing one of the three levels or by creating a
domain‑specific fork that adjusts requirements per application risk level. This type of fork is encour‑
aged, provided that itmaintains traceability so that passing requirement 4.1.1means the same across
all versions.

Ideally, each organization should create its own tailored ASVS, omitting irrelevant sections (e.g.,
GraphQL, Websockets, SOAP, if unused). Forking should start with ASVS Level 1 as a baseline, ad‑
vancing to Levels 2 or 3 based on the application’s risk.

Use cases for the ASVS

The ASVS can be used to assess the security of an application and this is explored in more depth in
the next chapter. However, several other potential uses for the ASVS (or a forked version) have been
identified.

As Detailed Security Architecture Guidance

One of the more common uses for the Application Security Verification Standard is as a resource
for security architects. There are limited resources available for how to build a secure application
archiecture, especially with modern applications. ASVS can be used to fill in those gaps by allowing
security architects to choose better controls for common problems, such as data protection patterns
and input validation strategies. The architecture and documentation requirements will be particu‑
larly useful for this.

As a Specialized Secure Coding Reference

The ASVS can be used as a basis for preparing a secure coding reference during application devel‑
opment, helping developers to make sure that they keep security in mind when they build software.
Whilst the ASVS can be the base, prganizations should prepare their own specific guidance which
is clear and unified and ideally be prepared based on guidance from security engineers or security

16

Application Security Verification Standard May 2025

architects. As an extension to this, organizations are encouraged wherever possible to prepare ap‑
proved security mechanisms and libraries that can be referenced in the guidance and used by devel‑
opers.

As a Guide for Automated Unit and Integration Tests

The ASVS is designed to be highly testable. Some verifications will be technical where as other re‑
quirements (such as the architectural anddocumentation requirements)may require documentation
or architecture review. By building unit and integration tests that test and fuzz for specific and rele‑
vant abuse cases related to the requirements that are verifiable by technicalmeans, it should be easier
to check that these controls are operating correctly on each build. For example, additional tests can
be crafted for the test suite for a login controller, testing the username parameter for common de‑
fault usernames, account enumeration, brute forcing, LDAP and SQL injection, and XSS. Similarly,
a test on the password parameter should include common passwords, password length, null byte
injection, removing the parameter, XSS, and more.

For Secure Development Training

ASVS can also be used to define the characteristics of secure software. Many “secure coding”courses
are simply ethical hacking courses with a light smear of coding tips. This may not necessarily help
developers to write more secure code. Instead, secure development courses can use the ASVS with a
strong focus on the positive mechanisms found in the ASVS, rather than the Top 10 negative things
not to do. TheASVS structure also provides a logical structure forwalking through the different topics
when securing an application.

As a Framework for Guiding the Procurement of Secure Software

The ASVS is a great framework to help with secure software procurement or procurement of custom
development services. The buyer can simply set a requirement that the software theywish to procure
must be developed at ASVS level X, and request that the seller proves that the software satisfies ASVS
level X.

Applying ASVS in Practice

Different threats have different motivations. Some industries have unique information and technol‑
ogy assets and domain‑specific regulatory compliance requirements.

Organizations are strongly encouraged to look deeply at their unique risk characteristics based on
the nature of their business, and based upon that risk and business requirements determine the
appropriate ASVS level.

17

Application Security Verification Standard May 2025

Assessment and Certification

OWASP’s Stance on ASVS Certifications and Trust Marks

OWASP, as a vendor‑neutral nonprofit, does not certify any vendors, verifiers, or software. Any as‑
surance, trust mark, or certification claiming ASVS compliance is not officially endorsed by OWASP,
so organizations should be cautious of third‑party claims of ASVS certification.

Organizations may offer assurance services, provided they do not claim official OWASP certifica‑
tion.

How to Verify ASVS Compliance

TheASVS is deliberately not presciptive about exactly how to verify compliance at the level of a testing
guide. However, it is important to highlight some key points.

Verification reporting

Traditional penetration testing reports issues “by exception,”only listing failures. However, an ASVS
certification report should include scope, a summary of all requirements checked, the requirements
where execptions were noted, and guidance on resolving issues. Some requirements may be non‑
applicable (e.g., session management in stateless APIs), and this must be noted in the report.

Scope of Verification

An organization developing an application will generally not implement all requirements, as some
may be irrelevant or less significant based on the functionality of the application. The verifier should
make the scope of the verification clear including which Level the organization is attempting to
achieve and which requirements were included. This should be from the perspective of what was
included rather than what was not included. They should also provide an opinion on the rationale of
excluding the requirements which haven’t been implemented.

This should allow the consumer of a verification report to understand the context of the verification
and make an informed decision about the level of trust they can place in the application.

Certifying organizations can choose their testingmethods but should disclose them in the report and
this should ideally be repeatable. Different methods, like manual penetration tests or source code
analysis, may be used to verify aspects such as input validation, depending on the application and
requirements.

18

Application Security Verification Standard May 2025

Verification Mechanisms

There are a number of different techniques which may be needed to verify specific ASVS require‑
ments. Aside from penetration testing (using valid credentials to get full application coverage), veri‑
fying ASVS requirements may require access to documentation, source code, configuration, and the
people involved in the development process. Especially for verifying L2 and L3 requirements. It is
standard practice to provide robust evidence of findingswith detailed documentation, whichmay in‑
clude work papers, screenshots, scripts, and testing logs. Merely running an automated tool without
thorough testing is insufficient for certification, as each requirement must be verifiably tested.

The use of automation to verify ASVS requirements is a topic that is constantly of interest. It is there‑
fore important to clarify some points related to automated and black box testing.

TheRoleof AutomatedSecurity TestingTools When automated security testing tools such as Dynamic
and Static Application Security Testing tools (DAST and SAST) are correctly implemented in the build
pipeline, theymay be able to identify some security issues that should never exist. However, without
careful configuration and tuning they will not provide the required coverage and the level of noise
will prevent real security issues from being identified and mitigated.

Whilst this may provide coverage of some of the more basic and straightforward technical require‑
ments such as those relating to output encoding or sanitiation, it is critical to note that these tools will
be unable entirely to verify many of the more complicated ASVS requirements or those that relate to
business logic and access control.

For less straightforward requirements, it is likely that automation can still be utilized but application
specific verifications will need to bewritten to achieve this. Thesemay be similar to unit and integra‑
tion tests that the organizationmay already be using. It may therefore be possible to use this existing
test automation infrastructure to write these ASVS specific tests. Whilst doing this will require short
term investment, the long term benefits being able to continually verify these ASVS requirements
will be significant.

In summary, testable using automation != running an off the shelf tool.

The Role of Penetration Testing Whilst L1 in version 4.0 was optimized for “black box”(no documen‑
tation and no source) testing to occur, even then the standard was clear that it is not an effective
assurance activity and should be actively discouraged.

Testing without access to necessary additional information is an inefficient and ineffective mecha‑
nism for security verification, as it misses out on the possibility of reviewing the source, identifying
threats and missing controls, and performing a far more thorough test in a shorter timeframe.

It is strongly encouraged to perform documentation or source code‑led (hybrid) penetration testing,
which have full access to the application developers and the application’s documentation, rather
than traditional penetration tests. This will certainly be necessary in order to verify many of the
ASVS requirements.

19

Application Security Verification Standard May 2025

Changes Compared to v4.x

Introduction

Users familiar with version 4.x of the standard may find it helpful to review the key changes intro‑
duced in version 5.0, including updates in content, scope, and underlying philosophy.

Of the 286 requirements in version 4.0.3, only 11 remain unchanged, while 15 have undergoneminor
grammatical adjustments without altering their meaning. In total 109 requirements (38%) are no
longer separate requirements in version 5.0 with 50 simply being deleted, 28 removed as duplicates
and 31merged into other requirements. The rest have been revised in someway. Even requirements
that were not substantively modified have different identifiers due to reordering or restructuring.

To facilitate adoption of version 5.0, mapping documents are provided to help users trace how re‑
quirements from version 4.x correspond to those in version 5.0. These mappings are not tied to
release versioning and may be updated or clarified as needed.

Requirement Philosophy

Scope and Focus

Version 4.x included requirements that did not align with the intended scope of the standard; these
have been removed. Requirements that did not meet the scope criteria for 5.0 or were not verifiable
have also been excluded.

Emphasis on Security Goals Over Mechanisms

In version 4.x, many requirements focused on specific mechanisms rather than the underlying se‑
curity objectives. In version 5.0, requirements are centered on security goals, referencing particular
mechanisms only when they are the sole practical solution, or providing them as examples or sup‑
plementary guidance.

This approach recognizes that multiple methods may exist to achieve a given security objective, and
avoids unnecessary prescriptiveness that could limit organizational flexibility.

Additionally, requirements addressing the same security concern have been consolidated where ap‑
propriate.

Documented Security Decisions

While the concept of documented security decisionsmay appear new in version 5.0, it is an evolution
of earlier requirements related to policy application and threat modeling in version 4.0. Previously,
some requirements implicitly demanded analysis to inform the implementation of security controls,
such as determining permitted network connections.

20

Application Security Verification Standard May 2025

To ensure that necessary information is available for implementation and verification, these expec‑
tations are now explicitly defined as documentation requirements, making them clear, actionable,
and verifiable.

Structural Changes and New Chapters

Several chapters in version 5.0 introduce entirely new content:

• OAuth and OIDC –Given the widespread adoption of these protocols for access delegation and
single sign‑on, dedicated requirements have been added to address the diverse scenarios de‑
velopers may encounter. This area may eventually evolve into a standalone standard, similar
to the treatment of Mobile and IoT requirements in previous versions.

• WebRTC –As this technology gains popularity, its unique security considerations and challenges
are now addressed in a dedicated section.

Efforts have also beenmade to ensure that chapters and sections are organized around coherent sets
of related requirements.

This restructuring has led to the creation of additional chapters:

• Self‑contained Tokens –Formerly grouped under session management, self‑contained tokens
are now recognized as a distinct mechanism and a foundational element for stateless com‑
munication (such as in OAuth and OIDC). Due to their unique security implications, they are
addressed in a dedicated chapter, with some new requirements introduced in version 5.x.

• Web Frontend Security –With the increasing complexity of browser‑based applications and the
rise of API‑only architectures, frontend security requirements have been separated into their
own chapter.

• Secure Coding and Architecture –New requirements addressing general security practices that
did not fit within existing chapters have been grouped here.

Other organizational changes in version 5.0 were made to clarify intent. For example, input valida‑
tion requirements were moved alongside business logic, reflecting their role in enforcing business
rules, rather than being grouped with sanitization and encoding.

The former V1 Architecture chapter has been removed. Its initial section contained requirements
that were out of scope, while subsequent sections have been redistributed to relevant chapters, with
requirements deduplicated and clarified as necessary.

Removal of Direct Mappings to Other Standards

Directmappings to other standards have been removed from themain body of the standard. The aim
is to prepare a mapping with the OWASP Common Requirement Enumeration (CRE) project, which
in turn will link ASVS to a range of OWASP projects and external standards.

Direct mappings to CWE and NIST are no longer maintained, as explained below.

21

Application Security Verification Standard May 2025

Reduced Coupling with NIST Digital Identity Guidelines

The NIST Digital Identity Guidelines (SP 800‑63) have long served as a reference for authentication
and authorization controls. In version 4.x, certain chapters were closely aligned with NIST’s struc‑
ture and terminology.

While these guidelines remain an important reference, strict alignment introduced challenges, in‑
cluding less widely recognized terminology, duplication of similar requirements, and incomplete
mappings. Version 5.0 moves away from this approach to improve clarity and relevance.

Moving Away from CommonWeakness Enumeration (CWE)

The CommonWeakness Enumeration (CWE) provides a useful taxonomy of software security weak‑
nesses. However, challenges such as category‑only CWEs, difficulties in mapping requirements to
a single CWE, and the presence of imprecise mappings in version 4.x have led to the decision to
discontinue direct CWEmappings in version 5.0.

Rethinking Level Definitions

Version 4.x described the levels as L1 (“Minimum”), L2 (“Standard”), and L3 (“Advanced”), with the
implication that all applications handling sensitive data should meet at least L2.

Version 5.0 addresses several issues with this approach which are described in the following para‑
graphs.

As a practical matter, whereas version 4.x used tick marks for level indicators, 5.x uses a simple
number on all formats of the standard including markdown, PDF, DOCX, CSV, JSON and XML. For
backwards compatibility, legacy versions of the CSV, JSONandXMLoutputswhich still use tickmarks
are also generated.

Easier Entry Level

Feedback indicated that the large number of Level 1 requirements (~120), combined with its desig‑
nation as the “minimum”level that is not good enough for most applications, discouraged adoption.
Version 5.0 aims to lower this barrier by defining Level 1 primarily aroundfirst‑layer defense require‑
ments, resulting in clearer and fewer requirements at that level. To demonstrate this numerically, in
v4.0.3 there were 128 L1 requirements out of a total of 278 requirements, representing 46%. In 5.0.0
there are 70 L1 requirements out of a total of 345 requirements, representing 20%.

The Fallacy of Testability

Akey factor in selecting controls for Level 1 in version 4.xwas their suitability for assessment through
“black box”external penetration testing. However, this approachwas not fully alignedwith the intent

22

https://pages.nist.gov/800-63-3/
https://cwe.mitre.org/

Application Security Verification Standard May 2025

of Level 1 as the minimum set of security controls. Some users argued that Level 1 was insufficient
for securing applications, while others found it too difficult to test.

Relying on testability as a criterion is both relative and, at times, misleading. The fact that a require‑
ment is testable does not guarantee that it can be tested in an automated or straightforwardmanner.
Moreover, the most easily testable requirements are not always those with the greatest security im‑
pact or the simplest to implement.

As such, in version 5.0, the level decisions were made primarily based on risk reduction and also
keeping in mind the effort to implement.

Not Just About Risk

The use of prescriptive, risk‑based levels that mandate a specific level for certain applications has
proven to be overly rigid. In practice, the prioritization and implementation of security controls
depend on multiple factors, including both risk reduction and the effort required for implementa‑
tion.

Therefore, organizations are encouraged to achieve the level that they feel like they should be achiev‑
ing based on their maturity and the message they want to send to their users.

V1 Encoding and Sanitization

Control Objective

This chapter addresses the most common web application security weaknesses related to the unsafe
processing of untrusted data. Such weaknesses can result in various technical vulnerabilities, where
untrusted data is interpreted according to the syntax rules of the relevant interpreter.

Formodernweb applications, it is always best to use safer APIs, such as parameterized queries, auto‑
escaping, or templating frameworks. Otherwise, carefully performed output encoding, escaping, or
sanitization becomes critical to the application’s security.

Input validation serves as a defense‑in‑depthmechanism to protect against unexpected or dangerous
content. However, since its primary purpose is to ensure that incoming content matches functional
and business expectations, requirements related to this can be found in the “Validation and Business
Logic”chapter.

V1.1 Encoding and Sanitization Architecture

In the sections below, syntax‑specific or interpreter‑specific requirements for safely processing un‑
safe content to avoid security vulnerabilities are provided. The requirements in this section cover
the order in which this processing should occur and where it should take place. They also aim to

23

Application Security Verification Standard May 2025

ensure that whenever data is stored, it remains in its original state and is not stored in an encoded or
escaped form (e.g., HTML encoding), to prevent double encoding issues.

Description Level

1.1.1 Verify that input is decoded or unescaped into a canonical form only once, it
is only decoded when encoded data in that form is expected, and that this is
done before processing the input further, for example it is not performed
after input validation or sanitization.

2

1.1.2 Verify that the application performs output encoding and escaping either as
a final step before being used by the interpreter for which it is intended or by
the interpreter itself.

2

V1.2 Injection Prevention

Output encoding or escaping, performed close to or adjacent to a potentially dangerous context, is
critical to the security of any application. Typically, output encoding and escaping are not persisted,
but are instead used to render output safe for immediate use in the appropriate interpreter. Attempt‑
ing to perform this too early may result in malformed content or render the encoding or escaping
ineffective.

In many cases, software libraries include safe or safer functions that perform this automatically,
although it is necessary to ensure that they are correct for the current context.

Description Level

1.2.1 Verify that output encoding for an HTTP response, HTML document, or XML
document is relevant for the context required, such as encoding the relevant
characters for HTML elements, HTML attributes, HTML comments, CSS, or
HTTP header fields, to avoid changing the message or document structure.

1

1.2.2 Verify that when dynamically building URLs, untrusted data is encoded
according to its context (e.g., URL encoding or base64url encoding for query
or path parameters). Ensure that only safe URL protocols are permitted (e.g.,
disallow javascript: or data:).

1

1.2.3 Verify that output encoding or escaping is used when dynamically building
JavaScript content (including JSON), to avoid changing the message or
document structure (to avoid JavaScript and JSON injection).

1

24

Application Security Verification Standard May 2025

Description Level

1.2.4 Verify that data selection or database queries (e.g., SQL, HQL, NoSQL,
Cypher) use parameterized queries, ORMs, entity frameworks, or are
otherwise protected from SQL Injection and other database injection attacks.
This is also relevant when writing stored procedures.

1

1.2.5 Verify that the application protects against OS command injection and that
operating system calls use parameterized OS queries or use contextual
command line output encoding.

1

1.2.6 Verify that the application protects against LDAP injection vulnerabilities, or
that specific security controls to prevent LDAP injection have been
implemented.

2

1.2.7 Verify that the application is protected against XPath injection attacks by
using query parameterization or precompiled queries.

2

1.2.8 Verify that LaTeX processors are configured securely (such as not using the “–
shell‑escape”flag) and an allowlist of commands is used to prevent LaTeX
injection attacks.

2

1.2.9 Verify that the application escapes special characters in regular expressions
(typically using a backslash) to prevent them from being misinterpreted as
metacharacters.

2

1.2.10 Verify that the application is protected against CSV and Formula Injection.
The application must follow the escaping rules defined in RFC 4180 sections
2.6 and 2.7 when exporting CSV content. Additionally, when exporting to CSV
or other spreadsheet formats (such as XLS, XLSX, or ODF), special characters
(including ‘=’, ‘+’, ‘‑’, ‘@’, ‘\t’(tab), and ‘\0’(null character)) must be escaped
with a single quote if they appear as the first character in a field value.

3

Note: Using parameterized queries or escaping SQL is not always sufficient. Query parts such as table
and column names (including “ORDER BY”column names) cannot be escaped. Including escaped
user‑supplied data in these fields results in failed queries or SQL injection.

V1.3 Sanitization

The ideal protection against using untrusted content in an unsafe context is to use context‑specific
encodingor escaping,whichmaintains the same semanticmeaningof theunsafe content but renders
it safe for use in that particular context, as discussed in more detail in the previous section.

Where this is not possible, sanitization becomes necessary, removing potentially dangerous charac‑
ters or content. In some cases, this may change the semantic meaning of the input, but for security

25

Application Security Verification Standard May 2025

reasons, there may be no alternative.

Description Level

1.3.1 Verify that all untrusted HTML input fromWYSIWYG editors or similar is
sanitized using a well‑known and secure HTML sanitization library or
framework feature.

1

1.3.2 Verify that the application avoids the use of eval() or other dynamic code
execution features such as Spring Expression Language (SpEL). Where there
is no alternative, any user input being included must be sanitized before
being executed.

1

1.3.3 Verify that data being passed to a potentially dangerous context is sanitized
beforehand to enforce safety measures, such as only allowing characters
which are safe for this context and trimming input which is too long.

2

1.3.4 Verify that user‑supplied Scalable Vector Graphics (SVG) scriptable content is
validated or sanitized to contain only tags and attributes (such as draw
graphics) that are safe for the application, e.g., do not contain scripts and
foreignObject.

2

1.3.5 Verify that the application sanitizes or disables user‑supplied scriptable or
expression template language content, such as Markdown, CSS or XSL
stylesheets, BBCode, or similar.

2

1.3.6 Verify that the application protects against Server‑side Request Forgery
(SSRF) attacks, by validating untrusted data against an allowlist of protocols,
domains, paths and ports and sanitizing potentially dangerous characters
before using the data to call another service.

2

1.3.7 Verify that the application protects against template injection attacks by not
allowing templates to be built based on untrusted input. Where there is no
alternative, any untrusted input being included dynamically during template
creation must be sanitized or strictly validated.

2

1.3.8 Verify that the application appropriately sanitizes untrusted input before use
in Java Naming and Directory Interface (JNDI) queries and that JNDI is
configured securely to prevent JNDI injection attacks.

2

1.3.9 Verify that the application sanitizes content before it is sent to memcache to
prevent injection attacks.

2

1.3.10 Verify that format strings which might resolve in an unexpected or malicious
way when used are sanitized before being processed.

2

1.3.11 Verify that the application sanitizes user input before passing to mail
systems to protect against SMTP or IMAP injection.

2

26

Application Security Verification Standard May 2025

Description Level

1.3.12 Verify that regular expressions are free from elements causing exponential
backtracking, and ensure untrusted input is sanitized to mitigate ReDoS or
Runaway Regex attacks.

3

V1.4 Memory, String, and Unmanaged Code

The following requirements address risks associatedwith unsafememory use, which generally apply
when the application uses a systems language or unmanaged code.

In some cases, it may be possible to achieve this by setting compiler flags that enable buffer overflow
protections and warnings, including stack randomization and data execution prevention, and that
break the build if unsafe pointer, memory, format string, integer, or string operations are found.

Description Level

1.4.1 Verify that the application uses memory‑safe string, safer memory copy and
pointer arithmetic to detect or prevent stack, buffer, or heap overflows.

2

1.4.2 Verify that sign, range, and input validation techniques are used to prevent
integer overflows.

2

1.4.3 Verify that dynamically allocated memory and resources are released, and
that references or pointers to freed memory are removed or set to null to
prevent dangling pointers and use‑after‑free vulnerabilities.

2

V1.5 Safe Deserialization

The conversion of data from a stored or transmitted representation into actual application objects
(deserialization) has historically been the cause of various code injection vulnerabilities. It is impor‑
tant to perform this process carefully and safely to avoid these types of issues.

In particular, certain methods of deserialization have been identified by programming language or
framework documentation as insecure and cannot bemade safewith untrusted data. For eachmech‑
anism in use, careful due diligence should be performed.

Description Level

1.5.1 Verify that the application configures XML parsers to use a restrictive
configuration and that unsafe features such as resolving external entities are
disabled to prevent XML eXternal Entity (XXE) attacks.

1

27

Application Security Verification Standard May 2025

Description Level

1.5.2 Verify that deserialization of untrusted data enforces safe input handling,
such as using an allowlist of object types or restricting client‑defined object
types, to prevent deserialization attacks. Deserialization mechanisms that
are explicitly defined as insecure must not be used with untrusted input.

2

1.5.3 Verify that different parsers used in the application for the same data type
(e.g., JSON parsers, XML parsers, URL parsers), perform parsing in a
consistent way and use the same character encoding mechanism to avoid
issues such as JSON Interoperability vulnerabilities or different URI or file
parsing behavior being exploited in Remote File Inclusion (RFI) or
Server‑side Request Forgery (SSRF) attacks.

3

References

For more information, see also:

• OWASP LDAP Injection Prevention Cheat Sheet
• OWASP Cross Site Scripting Prevention Cheat Sheet
• OWASP DOM Based Cross Site Scripting Prevention Cheat Sheet
• OWASP XML External Entity Prevention Cheat Sheet
• OWASPWeb Security Testing Guide: Client‑Side Testing
• OWASP Java Encoding Project
• DOMPurify ‑ Client‑side HTML Sanitization Library
• RFC4180 ‑ Common Format and MIME Type for Comma‑Separated Values (CSV) Files

For more information, specifically on deserialization or parsing issues, please see:

• OWASP Deserialization Cheat Sheet
• An Exploration of JSON Interoperability Vulnerabilities
• Orange Tsai ‑ A New Era of SSRF Exploiting URL Parser In Trending Programming Languages

V2 Validation and Business Logic

Control Objective

This chapter aims to ensure that a verified application meets the following high‑level goals:

• Input received by the application matches business or functional expectations.
• The business logic flow is sequential, processed in order, and cannot be bypassed.

28

https://cheatsheetseries.owasp.org/cheatsheets/LDAP_Injection_Prevention_Cheat_Sheet.html
https://cheatsheetseries.owasp.org/cheatsheets/Cross_Site_Scripting_Prevention_Cheat_Sheet.html
https://cheatsheetseries.owasp.org/cheatsheets/DOM_based_XSS_Prevention_Cheat_Sheet.html
https://cheatsheetseries.owasp.org/cheatsheets/XML_External_Entity_Prevention_Cheat_Sheet.html
https://owasp.org/www-project-web-security-testing-guide/stable/4-Web_Application_Security_Testing/11-Client-side_Testing
https://owasp.org/owasp-java-encoder/
https://github.com/cure53/DOMPurify
https://datatracker.ietf.org/doc/html/rfc4180#section-2
https://cheatsheetseries.owasp.org/cheatsheets/Deserialization_Cheat_Sheet.html
https://bishopfox.com/blog/json-interoperability-vulnerabilities
https://www.blackhat.com/docs/us-17/thursday/us-17-Tsai-A-New-Era-Of-SSRF-Exploiting-URL-Parser-In-Trending-Programming-Languages.pdf

Application Security Verification Standard May 2025

• Business logic includes limits and controls to detect and prevent automated attacks, such as
continuous small funds transfers or adding a million friends one at a time.

• High‑value business logic flows have considered abuse cases and malicious actors, and have
protections against spoofing, tampering, information disclosure, and elevation of privilege at‑
tacks.

V2.1 Validation and Business Logic Documentation

Validation and business logic documentation should clearly define business logic limits, validation
rules, and contextual consistency of combineddata items, so it is clearwhat needs to be implemented
in the application.

Description Level

2.1.1 Verify that the application’s documentation defines input validation rules for
how to check the validity of data items against an expected structure. This
could be common data formats such as credit card numbers, email
addresses, telephone numbers, or it could be an internal data format.

1

2.1.2 Verify that the application’s documentation defines how to validate the
logical and contextual consistency of combined data items, such as checking
that suburb and ZIP code match.

2

2.1.3 Verify that expectations for business logic limits and validations are
documented, including both per‑user and globally across the application.

2

V2.2 Input Validation

Effective input validation controls enforce business or functional expectations around the type of
data the application expects to receive. This ensures good data quality and reduces the attack sur‑
face. However, it does not remove or replace the need to use correct encoding, parameterization, or
sanitization when using the data in another component or for presenting it for output.

In this context, “input”could come from awide variety of sources, includingHTML formfields, REST
requests, URLparameters, HTTPheader fields, cookies, files on disk, databases, and external APIs.

A business logic control might check that a particular input is a number less than 100. A functional
expectation might check that a number is below a certain threshold, as that number controls how
many times a particular loop will take place, and a high number could lead to excessive processing
and a potential denial of service condition.

While schema validation is not explicitly mandated, it may be the most effective mechanism for full
validation coverage of HTTP APIs or other interfaces that use JSON or XML.

Please note the following points on Schema Validation:

29

Application Security Verification Standard May 2025

• The “published version”of the JSON Schema validation specification is considered production‑
ready, but not strictly speaking “stable.”When using JSON Schema validation, ensure there are
no gaps with the guidance in the requirements below.

• Any JSON Schema validation libraries in use should also bemonitored and updated if necessary
once the standard is formalized.

• DTD validation should not be used, and frameworkDTD evaluation should be disabled, to avoid
issues with XXE attacks against DTDs.

Description Level

2.2.1 Verify that input is validated to enforce business or functional expectations
for that input. This should either use positive validation against an allow list
of values, patterns, and ranges, or be based on comparing the input to an
expected structure and logical limits according to predefined rules. For L1,
this can focus on input which is used to make specific business or security
decisions. For L2 and up, this should apply to all input.

1

2.2.2 Verify that the application is designed to enforce input validation at a trusted
service layer. While client‑side validation improves usability and should be
encouraged, it must not be relied upon as a security control.

1

2.2.3 Verify that the application ensures that combinations of related data items
are reasonable according to the pre‑defined rules.

2

V2.3 Business Logic Security

This section considers key requirements to ensure that the application enforces business logic pro‑
cesses in the correct way and is not vulnerable to attacks that exploit the logic and flow of the appli‑
cation.

Description Level

2.3.1 Verify that the application will only process business logic flows for the same
user in the expected sequential step order and without skipping steps.

1

2.3.2 Verify that business logic limits are implemented per the application’s
documentation to avoid business logic flaws being exploited.

2

2.3.3 Verify that transactions are being used at the business logic level such that
either a business logic operation succeeds in its entirety or it is rolled back to
the previous correct state.

2

30

Application Security Verification Standard May 2025

Description Level

2.3.4 Verify that business logic level locking mechanisms are used to ensure that
limited quantity resources (such as theater seats or delivery slots) cannot be
double‑booked by manipulating the application’s logic.

2

2.3.5 Verify that high‑value business logic flows require multi‑user approval to
prevent unauthorized or accidental actions. This could include but is not
limited to large monetary transfers, contract approvals, access to classified
information, or safety overrides in manufacturing.

3

V2.4 Anti‑automation

This section includes anti‑automation controls to ensure that human‑like interactions are required
and excessive automated requests are prevented.

Description Level

2.4.1 Verify that anti‑automation controls are in place to protect against excessive
calls to application functions that could lead to data exfiltration,
garbage‑data creation, quota exhaustion, rate‑limit breaches,
denial‑of‑service, or overuse of costly resources.

2

2.4.2 Verify that business logic flows require realistic human timing, preventing
excessively rapid transaction submissions.

3

References

For more information, see also:

• OWASPWeb Security Testing Guide: Input Validation Testing
• OWASPWeb Security Testing Guide: Business Logic Testing
• Anti‑automation can be achieved in many ways, including the use of the OWASP Automated
Threats to Web Applications

• OWASP Input Validation Cheat Sheet
• JSON Schema

31

https://owasp.org/www-project-web-security-testing-guide/v42/4-Web_Application_Security_Testing/07-Input_Validation_Testing/README.html
https://owasp.org/www-project-web-security-testing-guide/v42/4-Web_Application_Security_Testing/10-Business_Logic_Testing/README
https://owasp.org/www-project-automated-threats-to-web-applications/
https://owasp.org/www-project-automated-threats-to-web-applications/
https://cheatsheetseries.owasp.org/cheatsheets/Input_Validation_Cheat_Sheet.html
https://json-schema.org/specification.html

Application Security Verification Standard May 2025

V3Web Frontend Security

Control Objective

This category focuses on requirements designed to protect against attacks executed via a web fron‑
tend. These requirements do not apply to machine‑to‑machine solutions.

V3.1 Web Frontend Security Documentation

This section outlines the browser security features that should be specified in the application’s doc‑
umentation.

Description Level

3.1.1 Verify that application documentation states the expected security features
that browsers using the application must support (such as HTTPS, HTTP
Strict Transport Security (HSTS), Content Security Policy (CSP), and other
relevant HTTP security mechanisms). It must also define how the
application must behave when some of these features are not available (such
as warning the user or blocking access).

3

V3.2 Unintended Content Interpretation

Rendering content or functionality in an incorrect context can result in malicious content being ex‑
ecuted or displayed.

Description Level

3.2.1 Verify that security controls are in place to prevent browsers from rendering
content or functionality in HTTP responses in an incorrect context (e.g.,
when an API, a user‑uploaded file or other resource is requested directly).
Possible controls could include: not serving the content unless HTTP request
header fields (such as Sec‑Fetch‑*) indicate it is the correct context, using the
sandbox directive of the Content‑Security‑Policy header field or using the
attachment disposition type in the Content‑Disposition header field.

1

3.2.2 Verify that content intended to be displayed as text, rather than rendered as
HTML, is handled using safe rendering functions (such as createTextNode or
textContent) to prevent unintended execution of content such as HTML or
JavaScript.

1

32

Application Security Verification Standard May 2025

Description Level

3.2.3 Verify that the application avoids DOM clobbering when using client‑side
JavaScript by employing explicit variable declarations, performing strict type
checking, avoiding storing global variables on the document object, and
implementing namespace isolation.

3

V3.3 Cookie Setup

This section outlines requirements for securely configuring sensitive cookies to provide a higher
level of assurance that they were created by the application itself and to prevent their contents from
leaking or being inappropriately modified.

Description Level

3.3.1 Verify that cookies have the ‘Secure’attribute set, and if the ’__Host‑’prefix is
not used for the cookie name, the ’__Secure‑’prefix must be used for the
cookie name.

1

3.3.2 Verify that each cookie’s ‘SameSite’attribute value is set according to the
purpose of the cookie, to limit exposure to user interface redress attacks and
browser‑based request forgery attacks, commonly known as cross‑site
request forgery (CSRF).

2

3.3.3 Verify that cookies have the ’__Host‑’prefix for the cookie name unless they
are explicitly designed to be shared with other hosts.

2

3.3.4 Verify that if the value of a cookie is not meant to be accessible to client‑side
scripts (such as a session token), the cookie must have the ‘HttpOnly’
attribute set and the same value (e. g. session token) must only be
transferred to the client via the ‘Set‑Cookie’header field.

2

3.3.5 Verify that when the application writes a cookie, the cookie name and value
length combined are not over 4096 bytes. Overly large cookies will not be
stored by the browser and therefore not sent with requests, preventing the
user from using application functionality which relies on that cookie.

3

V3.4 Browser Security Mechanism Headers

This section describes which security headers should be set on HTTP responses to enable browser
security features and restrictions when handling responses from the application.

33

Application Security Verification Standard May 2025

Description Level

3.4.1 Verify that a Strict‑Transport‑Security header field is included on all
responses to enforce an HTTP Strict Transport Security (HSTS) policy. A
maximum age of at least 1 year must be defined, and for L2 and up, the
policy must apply to all subdomains as well.

1

3.4.2 Verify that the Cross‑Origin Resource Sharing (CORS)
Access‑Control‑Allow‑Origin header field is a fixed value by the application,
or if the Origin HTTP request header field value is used, it is validated against
an allowlist of trusted origins. When ’Access‑Control‑Allow‑Origin: *’needs
to be used, verify that the response does not include any sensitive
information.

1

3.4.3 Verify that HTTP responses include a Content‑Security‑Policy response
header field which defines directives to ensure the browser only loads and
executes trusted content or resources, in order to limit execution of
malicious JavaScript. As a minimum, a global policy must be used which
includes the directives object‑src ‘none’and base‑uri ‘none’and defines either
an allowlist or uses nonces or hashes. For an L3 application, a per‑response
policy with nonces or hashes must be defined.

2

3.4.4 Verify that all HTTP responses contain an ‘X‑Content‑Type‑Options: nosniff’
header field. This instructs browsers not to use content sniffing and MIME
type guessing for the given response, and to require the response’s
Content‑Type header field value to match the destination resource. For
example, the response to a request for a style is only accepted if the
response’s Content‑Type is ‘text/css’. This also enables the use of the
Cross‑Origin Read Blocking (CORB) functionality by the browser.

2

3.4.5 Verify that the application sets a referrer policy to prevent leakage of
technically sensitive data to third‑party services via the ‘Referer’HTTP
request header field. This can be done using the Referrer‑Policy HTTP
response header field or via HTML element attributes. Sensitive data could
include path and query data in the URL, and for internal non‑public
applications also the hostname.

2

3.4.6 Verify that the web application uses the frame‑ancestors directive of the
Content‑Security‑Policy header field for every HTTP response to ensure that
it cannot be embedded by default and that embedding of specific resources
is allowed only when necessary. Note that the X‑Frame‑Options header field,
although supported by browsers, is obsolete and may not be relied upon.

2

3.4.7 Verify that the Content‑Security‑Policy header field specifies a location to
report violations.

3

34

Application Security Verification Standard May 2025

Description Level

3.4.8 Verify that all HTTP responses that initiate a document rendering (such as
responses with Content‑Type text/html), include the
Cross‑Origin‑Opener‑Policy header field with the same‑origin directive or
the same‑origin‑allow‑popups directive as required. This prevents attacks
that abuse shared access to Window objects, such as tabnabbing and frame
counting.

3

V3.5 Browser Origin Separation

Whenaccepting a request to sensitive functionality on the server side, the applicationneeds to ensure
the request is initiated by the application itself or by a trusted party and has not been forged by an
attacker.

Sensitive functionality in this context could include accepting form posts for authenticated
and non‑authenticated users (such as an authentication request), state‑changing operations, or
resource‑demanding functionality (such as data export).

The key protections here are browser security policies like Same Origin Policy for JavaScript and
also SameSite logic for cookies. Another common protection is the CORS preflight mechanism. This
mechanismwill be critical for endpoints designed to be called from a different origin, but it can also
be a useful request forgery preventionmechanism for endpoints which are not designed to be called
from a different origin.

Description Level

3.5.1 Verify that, if the application does not rely on the CORS preflight mechanism
to prevent disallowed cross‑origin requests to use sensitive functionality,
these requests are validated to ensure they originate from the application
itself. This may be done by using and validating anti‑forgery tokens or
requiring extra HTTP header fields that are not CORS‑safelisted
request‑header fields. This is to defend against browser‑based request
forgery attacks, commonly known as cross‑site request forgery (CSRF).

1

3.5.2 Verify that, if the application relies on the CORS preflight mechanism to
prevent disallowed cross‑origin use of sensitive functionality, it is not
possible to call the functionality with a request which does not trigger a
CORS‑preflight request. This may require checking the values of the ‘Origin’
and ‘Content‑Type’request header fields or using an extra header field that is
not a CORS‑safelisted header‑field.

1

35

Application Security Verification Standard May 2025

Description Level

3.5.3 Verify that HTTP requests to sensitive functionality use appropriate HTTP
methods such as POST, PUT, PATCH, or DELETE, and not methods defined
by the HTTP specification as “safe”such as HEAD, OPTIONS, or GET.
Alternatively, strict validation of the Sec‑Fetch‑* request header fields can be
used to ensure that the request did not originate from an inappropriate
cross‑origin call, a navigation request, or a resource load (such as an image
source) where this is not expected.

1

3.5.4 Verify that separate applications are hosted on different hostnames to
leverage the restrictions provided by same‑origin policy, including how
documents or scripts loaded by one origin can interact with resources from
another origin and hostname‑based restrictions on cookies.

2

3.5.5 Verify that messages received by the postMessage interface are discarded if
the origin of the message is not trusted, or if the syntax of the message is
invalid.

2

3.5.6 Verify that JSONP functionality is not enabled anywhere across the
application to avoid Cross‑Site Script Inclusion (XSSI) attacks.

3

3.5.7 Verify that data requiring authorization is not included in script resource
responses, like JavaScript files, to prevent Cross‑Site Script Inclusion (XSSI)
attacks.

3

3.5.8 Verify that authenticated resources (such as images, videos, scripts, and
other documents) can be loaded or embedded on behalf of the user only
when intended. This can be accomplished by strict validation of the
Sec‑Fetch‑* HTTP request header fields to ensure that the request did not
originate from an inappropriate cross‑origin call, or by setting a restrictive
Cross‑Origin‑Resource‑Policy HTTP response header field to instruct the
browser to block returned content.

3

V3.6 External Resource Integrity

This section provides guidance for the safe hosting of content on third‑party sites.

36

Application Security Verification Standard May 2025

Description Level

3.6.1 Verify that client‑side assets, such as JavaScript libraries, CSS, or web fonts,
are only hosted externally (e.g., on a Content Delivery Network) if the
resource is static and versioned and Subresource Integrity (SRI) is used to
validate the integrity of the asset. If this is not possible, there should be a
documented security decision to justify this for each resource.

3

V3.7 Other Browser Security Considerations

This section includes various other security controls andmodern browser security features required
for client‑side browser security.

Description Level

3.7.1 Verify that the application only uses client‑side technologies which are still
supported and considered secure. Examples of technologies which do not
meet this requirement include NSAPI plugins, Flash, Shockwave, ActiveX,
Silverlight, NACL, or client‑side Java applets.

2

3.7.2 Verify that the application will only automatically redirect the user to a
different hostname or domain (which is not controlled by the application)
where the destination appears on an allowlist.

2

3.7.3 Verify that the application shows a notification when the user is being
redirected to a URL outside of the application’s control, with an option to
cancel the navigation.

3

3.7.4 Verify that the application’s top‑level domain (e.g., site.tld) is added to the
public preload list for HTTP Strict Transport Security (HSTS). This ensures
that the use of TLS for the application is built directly into the main
browsers, rather than relying only on the Strict‑Transport‑Security response
header field.

3

3.7.5 Verify that the application behaves as documented (such as warning the user
or blocking access) if the browser used to access the application does not
support the expected security features.

3

References

For more information, see also:

• Set‑Cookie __Host‑ prefix details

37

https://developer.mozilla.org/en-US/docs/Web/HTTP/Headers/Set-Cookie#cookie_prefixes

Application Security Verification Standard May 2025

• OWASP Content Security Policy Cheat Sheet
• OWASP Secure Headers Project
• OWASP Cross‑Site Request Forgery Prevention Cheat Sheet
• HSTS Browser Preload List submission form
• OWASP DOM Clobbering Prevention Cheat Sheet

V4 API andWeb Service

Control Objective

Several considerations apply specifically to applications that expose APIs for use by web browsers
or other consumers (commonly using JSON, XML, or GraphQL). This chapter covers the relevant
security configurations and mechanisms that should be applied.

Note that authentication, session management, and input validation concerns from other chapters
also apply to APIs, so this chapter cannot be taken out of context or tested in isolation.

V4.1 Generic Web Service Security

This section addresses general web service security considerations and, consequently, basic web
service hygiene practices.

Description Level

4.1.1 Verify that every HTTP response with a message body contains a
Content‑Type header field that matches the actual content of the response,
including the charset parameter to specify safe character encoding (e.g.,
UTF‑8, ISO‑8859‑1) according to IANAMedia Types, such as “text/”, “/+xml”
and “/xml”.

1

4.1.2 Verify that only user‑facing endpoints (intended for manual web‑browser
access) automatically redirect from HTTP to HTTPS, while other services or
endpoints do not implement transparent redirects. This is to avoid a
situation where a client is erroneously sending unencrypted HTTP requests,
but since the requests are being automatically redirected to HTTPS, the
leakage of sensitive data goes undiscovered.

2

4.1.3 Verify that any HTTP header field used by the application and set by an
intermediary layer, such as a load balancer, a web proxy, or a
backend‑for‑frontend service, cannot be overridden by the end‑user.
Example headers might include X‑Real‑IP, X‑Forwarded‑*, or X‑User‑ID.

2

38

https://cheatsheetseries.owasp.org/cheatsheets/Content_Security_Policy_Cheat_Sheet.html
https://owasp.org/www-project-secure-headers/
https://cheatsheetseries.owasp.org/cheatsheets/Cross-Site_Request_Forgery_Prevention_Cheat_Sheet.html
https://hstspreload.org/
https://cheatsheetseries.owasp.org/cheatsheets/DOM_Clobbering_Prevention_Cheat_Sheet.html

Application Security Verification Standard May 2025

Description Level

4.1.4 Verify that only HTTP methods that are explicitly supported by the
application or its API (including OPTIONS during preflight requests) can be
used and that unused methods are blocked.

3

4.1.5 Verify that per‑message digital signatures are used to provide additional
assurance on top of transport protections for requests or transactions which
are highly sensitive or which traverse a number of systems.

3

V4.2 HTTPMessage Structure Validation

This section explains how the structure and header fields of an HTTPmessage should be validated to
prevent attacks such as request smuggling, response splitting, header injection, and denial of service
via overly long HTTP messages.

These requirements are relevant for general HTTP message processing and generation, but are es‑
pecially important when converting HTTP messages between different HTTP versions.

Description Level

4.2.1 Verify that all application components (including load balancers, firewalls,
and application servers) determine boundaries of incoming HTTP messages
using the appropriate mechanism for the HTTP version to prevent HTTP
request smuggling. In HTTP/1.x, if a Transfer‑Encoding header field is
present, the Content‑Length header must be ignored per RFC 2616. When
using HTTP/2 or HTTP/3, if a Content‑Length header field is present, the
receiver must ensure that it is consistent with the length of the DATA frames.

2

4.2.2 Verify that when generating HTTP messages, the Content‑Length header
field does not conflict with the length of the content as determined by the
framing of the HTTP protocol, in order to prevent request smuggling attacks.

3

4.2.3 Verify that the application does not send nor accept HTTP/2 or HTTP/3
messages with connection‑specific header fields such as Transfer‑Encoding
to prevent response splitting and header injection attacks.

3

4.2.4 Verify that the application only accepts HTTP/2 and HTTP/3 requests where
the header fields and values do not contain any CR (\r), LF (\n), or CRLF
(\r\n) sequences, to prevent header injection attacks.

3

39

Application Security Verification Standard May 2025

Description Level

4.2.5 Verify that, if the application (backend or frontend) builds and sends
requests, it uses validation, sanitization, or other mechanisms to avoid
creating URIs (such as for API calls) or HTTP request header fields (such as
Authorization or Cookie), which are too long to be accepted by the receiving
component. This could cause a denial of service, such as when sending an
overly long request (e.g., a long cookie header field), which results in the
server always responding with an error status.

3

V4.3 GraphQL

GraphQL is becomingmore common as away of creating data‑rich clients that are not tightly coupled
to a variety of backend services. This section covers security considerations for GraphQL.

Description Level

4.3.1 Verify that a query allowlist, depth limiting, amount limiting, or query cost
analysis is used to prevent GraphQL or data layer expression Denial of
Service (DoS) as a result of expensive, nested queries.

2

4.3.2 Verify that GraphQL introspection queries are disabled in the production
environment unless the GraphQL API is meant to be used by other parties.

2

V4.4 WebSocket

WebSocket is a communications protocol that provides a simultaneous two‑way communication
channel over a single TCP connection. It was standardized by the IETF as RFC 6455 in 2011 and is
distinct from HTTP, even though it is designed to work over HTTP ports 443 and 80.

This sectionprovides key security requirements to prevent attacks related to communication security
and session management that specifically exploit this real‑time communication channel.

Description Level

4.4.1 Verify that WebSocket over TLS (WSS) is used for all WebSocket connections. 1

4.4.2 Verify that, during the initial HTTPWebSocket handshake, the Origin header
field is checked against a list of origins allowed for the application.

2

40

Application Security Verification Standard May 2025

Description Level

4.4.3 Verify that, if the application’s standard session management cannot be
used, dedicated tokens are being used for this, which comply with the
relevant Session Management security requirements.

2

4.4.4 Verify that dedicated WebSocket session management tokens are initially
obtained or validated through the previously authenticated HTTPS session
when transitioning an existing HTTPS session to a WebSocket channel.

2

References

For more information, see also:

• OWASP REST Security Cheat Sheet
• Resources on GraphQL Authorization from graphql.org and Apollo.
• OWASPWeb Security Testing Guide: GraphQL Testing
• OWASPWeb Security Testing Guide: Testing WebSockets

V5 File Handling

Control Objective

The use of files can present a variety of risks to the application, including denial of service, unautho‑
rized access, and storage exhaustion. This chapter includes requirements to address these risks.

V5.1 File Handling Documentation

This section includes a requirement to document the expected characteristics of files accepted by the
application, as a necessary precondition for developing and verifying relevant security checks.

Description Level

5.1.1 Verify that the documentation defines the permitted file types, expected file
extensions, and maximum size (including unpacked size) for each upload
feature. Additionally, ensure that the documentation specifies how files are
made safe for end‑users to download and process, such as how the
application behaves when a malicious file is detected.

2

41

https://cheatsheetseries.owasp.org/cheatsheets/REST_Security_Cheat_Sheet.html
https://graphql.org/learn/authorization/
https://www.apollographql.com/docs/apollo-server/security/authentication/#authorization-methods
https://owasp.org/www-project-web-security-testing-guide/stable/4-Web_Application_Security_Testing/12-API_Testing/01-Testing_GraphQL
https://owasp.org/www-project-web-security-testing-guide/stable/4-Web_Application_Security_Testing/11-Client-side_Testing/10-Testing_WebSockets

Application Security Verification Standard May 2025

V5.2 File Upload and Content

File upload functionality is a primary source of untrusted files. This section outlines the require‑
ments for ensuring that the presence, volume, or content of these files cannot harm the applica‑
tion.

Description Level

5.2.1 Verify that the application will only accept files of a size which it can process
without causing a loss of performance or a denial of service attack.

1

5.2.2 Verify that when the application accepts a file, either on its own or within an
archive such as a zip file, it checks if the file extension matches an expected
file extension and validates that the contents correspond to the type
represented by the extension. This includes, but is not limited to, checking
the initial ‘magic bytes’, performing image re‑writing, and using specialized
libraries for file content validation. For L1, this can focus just on files which
are used to make specific business or security decisions. For L2 and up, this
must apply to all files being accepted.

1

5.2.3 Verify that the application checks compressed files (e.g., zip, gz, docx, odt)
against maximum allowed uncompressed size and against maximum
number of files before uncompressing the file.

2

5.2.4 Verify that a file size quota and maximum number of files per user are
enforced to ensure that a single user cannot fill up the storage with too many
files, or excessively large files.

3

5.2.5 Verify that the application does not allow uploading compressed files
containing symlinks unless this is specifically required (in which case it will
be necessary to enforce an allowlist of the files that can be symlinked to).

3

5.2.6 Verify that the application rejects uploaded images with a pixel size larger
than the maximum allowed, to prevent pixel flood attacks.

3

V5.3 File Storage

This section includes requirements to prevent files frombeing inappropriately executed after upload,
to detect dangerous content, and to avoid untrusted data being used to control where files are being
stored.

42

Application Security Verification Standard May 2025

Description Level

5.3.1 Verify that files uploaded or generated by untrusted input and stored in a
public folder, are not executed as server‑side program code when accessed
directly with an HTTP request.

1

5.3.2 Verify that when the application creates file paths for file operations, instead
of user‑submitted filenames, it uses internally generated or trusted data, or if
user‑submitted filenames or file metadata must be used, strict validation and
sanitization must be applied. This is to protect against path traversal, local or
remote file inclusion (LFI, RFI), and server‑side request forgery (SSRF)
attacks.

1

5.3.3 Verify that server‑side file processing, such as file decompression, ignores
user‑provided path information to prevent vulnerabilities such as zip slip.

3

V5.4 File Download

This section contains requirements to mitigate risks when serving files to be downloaded, including
path traversal and injection attacks. This also includes making sure they don’t contain dangerous
content.

Description Level

5.4.1 Verify that the application validates or ignores user‑submitted filenames,
including in a JSON, JSONP, or URL parameter and specifies a filename in the
Content‑Disposition header field in the response.

2

5.4.2 Verify that file names served (e.g., in HTTP response header fields or email
attachments) are encoded or sanitized (e.g., following RFC 6266) to preserve
document structure and prevent injection attacks.

2

5.4.3 Verify that files obtained from untrusted sources are scanned by antivirus
scanners to prevent serving of known malicious content.

2

References

For more information, see also:

• OWASP File Upload Cheat Sheet
• Example of using symlinks for arbitrary file read
• Explanation of “Magic Bytes”fromWikipedia

43

https://cheatsheetseries.owasp.org/cheatsheets/File_Upload_Cheat_Sheet.html
https://hackerone.com/reports/1439593
https://en.wikipedia.org/wiki/List_of_file_signatures

Application Security Verification Standard May 2025

V6 Authentication

Control Objective

Authentication is theprocess of establishingor confirming the authenticity of an individual or device.
It involves verifying claimsmadebyapersonor about a device, ensuring resistance to impersonation,
and preventing the recovery or interception of passwords.

NIST SP 800‑63 is a modern, evidence‑based standard that is valuable for organizations worldwide,
but is particularly relevant to US agencies and those interacting with US agencies.

While many of the requirements in this chapter are based on the second section of the standard
(known as NIST SP 800‑63B “Digital Identity Guidelines ‑ Authentication and Lifecycle Management”
), the chapter focuses on common threats and frequently exploited authentication weaknesses. It
does not attempt to comprehensively cover every point in the standard. For cases where full NIST SP
800‑63 compliance is necessary, please refer to NIST SP 800‑63.

Additionally, NIST SP 800‑63 terminology may sometimes differ, and this chapter often uses more
commonly understood terminology to improve clarity.

A common feature of more advanced applications is the ability to adapt authentication stages re‑
quired based on various risk factors. This feature is covered in the “Authorization”chapter, since
these mechanisms also need to be considered for authorization decisions.

V6.1 Authentication Documentation

This section contains requirements detailing the authentication documentation that should bemain‑
tained for an application. This is crucial for implementing and assessing how the relevant authenti‑
cation controls should be configured.

Description Level

6.1.1 Verify that application documentation defines how controls such as rate
limiting, anti‑automation, and adaptive response, are used to defend against
attacks such as credential stuffing and password brute force. The
documentation must make clear how these controls are configured and
prevent malicious account lockout.

1

6.1.2 Verify that a list of context‑specific words is documented in order to prevent
their use in passwords. The list could include permutations of organization
names, product names, system identifiers, project codenames, department
or role names, and similar.

2

44

https://pages.nist.gov/800-63-3/

Application Security Verification Standard May 2025

Description Level

6.1.3 Verify that, if the application includes multiple authentication pathways,
these are all documented together with the security controls and
authentication strength which must be consistently enforced across them.

2

V6.2 Password Security

Passwords, called “Memorized Secrets”by NIST SP 800‑63, include passwords, passphrases, PINs,
unlock patterns, and picking the correct kitten or another image element. They are generally con‑
sidered “something you know”and are often used as a single‑factor authentication mechanism.

As such, this section contains requirements formaking sure that passwords are created and handled
securely. Most of the requirements are L1 as they are most important at that level. From L2 on‑
wards, multi‑factor authentication mechanisms are required, where passwords may be one of those
factors.

The requirements in this section mostly relate to § 5.1.1.2 of NIST’s Guidance.

Description Level

6.2.1 Verify that user set passwords are at least 8 characters in length although a
minimum of 15 characters is strongly recommended.

1

6.2.2 Verify that users can change their password. 1

6.2.3 Verify that password change functionality requires the user’s current and
new password.

1

6.2.4 Verify that passwords submitted during account registration or password
change are checked against an available set of, at least, the top 3000
passwords which match the application’s password policy, e.g. minimum
length.

1

6.2.5 Verify that passwords of any composition can be used, without rules limiting
the type of characters permitted. There must be no requirement for a
minimum number of upper or lower case characters, numbers, or special
characters.

1

6.2.6 Verify that password input fields use type=password to mask the entry.
Applications may allow the user to temporarily view the entire masked
password, or the last typed character of the password.

1

6.2.7 Verify that “paste”functionality, browser password helpers, and external
password managers are permitted.

1

45

https://pages.nist.gov/800-63-3/sp800-63b.html#memsecretver
https://pages.nist.gov/800-63-3/sp800-63b.html

Application Security Verification Standard May 2025

Description Level

6.2.8 Verify that the application verifies the user’s password exactly as received
from the user, without any modifications such as truncation or case
transformation.

1

6.2.9 Verify that passwords of at least 64 characters are permitted. 2

6.2.10 Verify that a user’s password stays valid until it is discovered to be
compromised or the user rotates it. The application must not require
periodic credential rotation.

2

6.2.11 Verify that the documented list of context specific words is used to prevent
easy to guess passwords being created.

2

6.2.12 Verify that passwords submitted during account registration or password
changes are checked against a set of breached passwords.

2

V6.3 General Authentication Security

This section contains general requirements for the security of authenticationmechanisms as well as
setting out the different expectations for levels. L2 applications must force the use of multi‑factor
authentication (MFA). L3 applications must use hardware‑based authentication, performed in an at‑
tested and trusted execution environment (TEE). This could include device‑bound passkeys, eIDAS
Level of Assurance (LoA) High enforced authenticators, authenticators with NIST Authenticator As‑
surance Level 3 (AAL3) assurance, or an equivalent mechanism.

While this is a relatively aggressive stance onMFA, it is critical to raise the bar around this to protect
users, and any attempt to relax these requirements should be accompanied by a clear plan on how
the risks around authentication will be mitigated, taking into account NIST’s guidance and research
on the topic.

Note that at the time of release, NIST SP 800‑63 considers email as not acceptable as an authentication
mechanism (archived copy).

The requirements in this section relate to a variety of sections of NIST’s Guidance, including: § 4.2.1,
§ 4.3.1, § 5.2.2, and § 6.1.2.

Description Level

6.3.1 Verify that controls to prevent attacks such as credential stuffing and
password brute force are implemented according to the application’s
security documentation.

1

6.3.2 Verify that default user accounts (e.g., “root”, “admin”, or “sa”) are not
present in the application or are disabled.

1

46

https://pages.nist.gov/800-63-FAQ/#q-b11
https://web.archive.org/web/20250330115328/https://pages.nist.gov/800-63-FAQ/#q-b11
https://pages.nist.gov/800-63-3/sp800-63b.html
https://pages.nist.gov/800-63-3/sp800-63b.html#421-permitted-authenticator-types
https://pages.nist.gov/800-63-3/sp800-63b.html#431-permitted-authenticator-types
https://pages.nist.gov/800-63-3/sp800-63b.html#522-rate-limiting-throttling
https://pages.nist.gov/800-63-3/sp800-63b.html#-612-post-enrollment-binding

Application Security Verification Standard May 2025

Description Level

6.3.3 Verify that either a multi‑factor authentication mechanism or a combination
of single‑factor authentication mechanisms, must be used in order to access
the application. For L3, one of the factors must be a hardware‑based
authentication mechanism which provides compromise and impersonation
resistance against phishing attacks while verifying the intent to authenticate
by requiring a user‑initiated action (such as a button press on a FIDO
hardware key or a mobile phone). Relaxing any of the considerations in this
requirement requires a fully documented rationale and a comprehensive set
of mitigating controls.

2

6.3.4 Verify that, if the application includes multiple authentication pathways,
there are no undocumented pathways and that security controls and
authentication strength are enforced consistently.

2

6.3.5 Verify that users are notified of suspicious authentication attempts
(successful or unsuccessful). This may include authentication attempts from
an unusual location or client, partially successful authentication (only one of
multiple factors), an authentication attempt after a long period of inactivity
or a successful authentication after several unsuccessful attempts.

3

6.3.6 Verify that email is not used as either a single‑factor or multi‑factor
authentication mechanism.

3

6.3.7 Verify that users are notified after updates to authentication details, such as
credential resets or modification of the username or email address.

3

6.3.8 Verify that valid users cannot be deduced from failed authentication
challenges, such as by basing on error messages, HTTP response codes, or
different response times. Registration and forgot password functionality
must also have this protection.

3

V6.4 Authentication Factor Lifecycle and Recovery

Authentication factors may include passwords, soft tokens, hardware tokens, and biometric devices.
Securely handling the lifecycle of these mechanisms is critical to the security of an application, and
this section includes requirements related to this.

The requirements in this section mostly relate to § 5.1.1.2 or § 6.1.2.3 of NIST’s Guidance.

47

https://pages.nist.gov/800-63-3/sp800-63b.html#memsecretver
https://pages.nist.gov/800-63-3/sp800-63b.html#replacement
https://pages.nist.gov/800-63-3/sp800-63b.html

Application Security Verification Standard May 2025

Description Level

6.4.1 Verify that system generated initial passwords or activation codes are
securely randomly generated, follow the existing password policy, and
expire after a short period of time or after they are initially used. These
initial secrets must not be permitted to become the long term password.

1

6.4.2 Verify that password hints or knowledge‑based authentication (so‑called
“secret questions”) are not present.

1

6.4.3 Verify that a secure process for resetting a forgotten password is
implemented, that does not bypass any enabled multi‑factor authentication
mechanisms.

2

6.4.4 Verify that if a multi‑factor authentication factor is lost, evidence of identity
proofing is performed at the same level as during enrollment.

2

6.4.5 Verify that renewal instructions for authenticationmechanisms which expire
are sent with enough time to be carried out before the old authentication
mechanism expires, configuring automated reminders if necessary.

3

6.4.6 Verify that administrative users can initiate the password reset process for
the user, but that this does not allow them to change or choose the user’s
password. This prevents a situation where they know the user’s password.

3

V6.5 General Multi‑factor authentication requirements

This section provides general guidance that will be relevant to various different multi‑factor authen‑
tication methods.

The mechanisms include:

• Lookup Secrets
• Time based One‑time Passwords (TOTPs)
• Out‑of‑Band mechanisms

Lookup secrets are pre‑generated lists of secret codes, similar to Transaction Authorization Num‑
bers (TAN), social media recovery codes, or a grid containing a set of random values. This type of
authentication mechanism is considered “something you have”because the codes are deliberately
not memorable so will need to be stored somewhere.

Time based One‑time Passwords (TOTPs) are physical or soft tokens that display a continually
changing pseudo‑random one‑time challenge. This type of authenticationmechanism is considered
“something you have”. Multi‑factor TOTPs are similar to single‑factor TOTPs, but require a valid
PIN code, biometric unlocking, USB insertion or NFC pairing, or some additional value (such as
transaction signing calculators) to be entered to create the final One‑time Password (OTP).

48

Application Security Verification Standard May 2025

Details on out‑of‑band mechanisms will be provided in the next section.

The requirements in these sections mostly relate to § 5.1.2, § 5.1.3, § 5.1.4.2, § 5.1.5.2, § 5.2.1, and §
5.2.3 of NIST’s Guidance.

Description Level

6.5.1 Verify that lookup secrets, out‑of‑band authentication requests or codes, and
time‑based one‑time passwords (TOTPs) are only successfully usable once.

2

6.5.2 Verify that, when being stored in the application’s backend, lookup secrets
with less than 112 bits of entropy (19 random alphanumeric characters or 34
random digits) are hashed with an approved password storage hashing
algorithm that incorporates a 32‑bit random salt. A standard hash function
can be used if the secret has 112 bits of entropy or more.

2

6.5.3 Verify that lookup secrets, out‑of‑band authentication code, and time‑based
one‑time password seeds, are generated using a Cryptographically Secure
Pseudorandom Number Generator (CSPRNG) to avoid predictable values.

2

6.5.4 Verify that lookup secrets and out‑of‑band authentication codes have a
minimum of 20 bits of entropy (typically 4 random alphanumeric characters
or 6 random digits is sufficient).

2

6.5.5 Verify that out‑of‑band authentication requests, codes, or tokens, as well as
time‑based one‑time passwords (TOTPs) have a defined lifetime. Out of band
requests must have a maximum lifetime of 10 minutes and for TOTP a
maximum lifetime of 30 seconds.

2

6.5.6 Verify that any authentication factor (including physical devices) can be
revoked in case of theft or other loss.

3

6.5.7 Verify that biometric authentication mechanisms are only used as secondary
factors together with either something you have or something you know.

3

6.5.8 Verify that time‑based one‑time passwords (TOTPs) are checked based on a
time source from a trusted service and not from an untrusted or client
provided time.

3

V6.6 Out‑of‑Band authenticationmechanisms

This usually involves the authentication server communicating with a physical device over a secure
secondary channel. For example, sending push notifications to mobile devices. This type of authen‑
tication mechanism is considered “something you have”.

Unsafe out‑of‑band authentication mechanisms such as e‑mail and VOIP are not permitted. PSTN
and SMS authentication are currently considered to be “restricted”authentication mechanisms by

49

https://pages.nist.gov/800-63-3/sp800-63b.html#-512-look-up-secrets
https://pages.nist.gov/800-63-3/sp800-63b.html#-513-out-of-band-devices
https://pages.nist.gov/800-63-3/sp800-63b.html#5142-single-factor-otp-verifiers
https://pages.nist.gov/800-63-3/sp800-63b.html#5152-multi-factor-otp-verifiers
https://pages.nist.gov/800-63-3/sp800-63b.html#521-physical-authenticators
https://pages.nist.gov/800-63-3/sp800-63b.html#523-use-of-biometrics
https://pages.nist.gov/800-63-3/sp800-63b.html#523-use-of-biometrics
https://pages.nist.gov/800-63-3/sp800-63b.html
https://pages.nist.gov/800-63-FAQ/#q-b01

Application Security Verification Standard May 2025

NIST and should be deprecated in favor of Time based One‑time Passwords (TOTPs), a cryptographic
mechanism, or similar. NIST SP 800‑63B § 5.1.3.3 recommends addressing the risks of device swap,
SIM change, number porting, or other abnormal behavior, if telephone or SMS out‑of‑band authen‑
tication absolutely has to be supported. While this ASVS section does not mandate this as a require‑
ment, not taking these precautions for a sensitive L2 app or an L3 app should be seen as a significant
red flag.

Note that NIST has also recently provided guidance which discourages the use of push notifications.
While this ASVS section does not do so, it is important to be aware of the risks of “push bombing”.

Description Level

6.6.1 Verify that authentication mechanisms using the Public Switched Telephone
Network (PSTN) to deliver One‑time Passwords (OTPs) via phone or SMS are
offered only when the phone number has previously been validated,
alternate stronger methods (such as Time based One‑time Passwords) are
also offered, and the service provides information on their security risks to
users. For L3 applications, phone and SMS must not be available as options.

2

6.6.2 Verify that out‑of‑band authentication requests, codes, or tokens are bound
to the original authentication request for which they were generated and are
not usable for a previous or subsequent one.

2

6.6.3 Verify that a code based out‑of‑band authentication mechanism is protected
against brute force attacks by using rate limiting. Consider also using a code
with at least 64 bits of entropy.

2

6.6.4 Verify that, where push notifications are used for multi‑factor
authentication, rate limiting is used to prevent push bombing attacks.
Number matching may also mitigate this risk.

3

V6.7 Cryptographic authenticationmechanism

Cryptographic authentication mechanisms include smart cards or FIDO keys, where the user has to
plug in or pair the cryptographic device to the computer to complete authentication. The authenti‑
cation server will send a challenge nonce to the cryptographic device or software, and the device or
software calculates a response based upon a securely stored cryptographic key. The requirements
in this section provide implementation‑specific guidance for these mechanisms, with guidance on
cryptographic algorithms being covered in the “Cryptography”chapter.

Where shared or secret keys are used for cryptographic authentication, these should be stored using
the same mechanisms as other system secrets, as documented in the “Secret Management”section
in the “Configuration”chapter.

The requirements in this section mostly relate to § 5.1.7.2 of NIST’s Guidance.

50

https://pages.nist.gov/800-63-3/sp800-63b.html#-5133-authentication-using-the-public-switched-telephone-network
https://pages.nist.gov/800-63-4/sp800-63b/authenticators/#fig-3
https://pages.nist.gov/800-63-3/sp800-63b.html#sfcdv
https://pages.nist.gov/800-63-3/sp800-63b.html

Application Security Verification Standard May 2025

Description Level

6.7.1 Verify that the certificates used to verify cryptographic authentication
assertions are stored in a way protects them frommodification.

3

6.7.2 Verify that the challenge nonce is at least 64 bits in length, and statistically
unique or unique over the lifetime of the cryptographic device.

3

V6.8 Authentication with an Identity Provider

Identity Providers (IdPs) provide federated identity for users. Users will often have more than one
identity with multiple IdPs, such as an enterprise identity using Azure AD, Okta, Ping Identity, or
Google, or consumer identity using Facebook, Twitter, Google, or WeChat, to name just a few com‑
mon alternatives. This list is not an endorsement of these companies or services, but simply an
encouragement for developers to consider the reality that many users have many established identi‑
ties. Organizations should consider integrating with existing user identities, as per the risk profile of
the IdP’s strength of identity proofing. For example, it is unlikely a government organization would
accept a social media identity as a login for sensitive systems, as it is easy to create fake or throw‑
away identities, whereas amobile game companymaywell need to integrate withmajor socialmedia
platforms to grow their active player base.

Secure use of external identity providers requires careful configuration and verification to prevent
identity spoofing or forged assertions. This section provides requirements to address these risks.

Description Level

6.8.1 Verify that, if the application supports multiple identity providers (IdPs), the
user’s identity cannot be spoofed via another supported identity provider
(eg. by using the same user identifier). The standard mitigation would be for
the application to register and identify the user using a combination of the
IdP ID (serving as a namespace) and the user’s ID in the IdP.

2

6.8.2 Verify that the presence and integrity of digital signatures on authentication
assertions (for example on JWTs or SAML assertions) are always validated,
rejecting any assertions that are unsigned or have invalid signatures.

2

6.8.3 Verify that SAML assertions are uniquely processed and used only once
within the validity period to prevent replay attacks.

2

51

Application Security Verification Standard May 2025

Description Level

6.8.4 Verify that, if an application uses a separate Identity Provider (IdP) and
expects specific authentication strength, methods, or recentness for specific
functions, the application verifies this using the information returned by the
IdP. For example, if OIDC is used, this might be achieved by validating ID
Token claims such as ‘acr’, ‘amr’, and ‘auth_time’(if present). If the IdP does
not provide this information, the application must have a documented
fallback approach that assumes that the minimum strength authentication
mechanism was used (for example, single‑factor authentication using
username and password).

2

References

For more information, see also:

• NIST SP 800‑63 ‑ Digital Identity Guidelines
• NIST SP 800‑63B ‑ Authentication and Lifecycle Management
• NIST SP 800‑63 FAQ
• OWASPWeb Security Testing Guide: Testing for Authentication
• OWASP Password Storage Cheat Sheet
• OWASP Forgot Password Cheat Sheet
• OWASP Choosing and Using Security Questions Cheat Sheet
• CISA Guidance on “Number Matching”
• Details on the FIDO Alliance

V7 Session Management

Control Objective

Session management mechanisms allow applications to correlate user and device interactions over
time, even when using stateless communication protocols (such as HTTP). Modern applicationsmay
use multiple session tokens with distinct characteristics and purposes. A secure session manage‑
ment system is one that prevents attackers from obtaining, utilizing, or otherwise abusing a victim’
s session. Applications maintaining sessions must ensure that the following high‑level session man‑
agement requirements are met:

• Sessions are unique to each individual and cannot be guessed or shared.
• Sessions are invalidatedwhenno longer required and are timed out during periods of inactivity.

52

https://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-63-3.pdf
https://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-63b.pdf
https://pages.nist.gov/800-63-FAQ/
https://owasp.org/www-project-web-security-testing-guide/stable/4-Web_Application_Security_Testing/04-Authentication_Testing
https://cheatsheetseries.owasp.org/cheatsheets/Password_Storage_Cheat_Sheet.html
https://cheatsheetseries.owasp.org/cheatsheets/Forgot_Password_Cheat_Sheet.html
https://cheatsheetseries.owasp.org/cheatsheets/Choosing_and_Using_Security_Questions_Cheat_Sheet.html
https://www.cisa.gov/sites/default/files/publications/fact-sheet-implement-number-matching-in-mfa-applications-508c.pdf
https://fidoalliance.org/

Application Security Verification Standard May 2025

Many of the requirements in this chapter relate to selected NIST SP 800‑63 Digital Identity Guidelines
controls, focusing on common threats and commonly exploited authentication weaknesses.

Note that requirements for specific implementation details of certain session management mecha‑
nisms can be found elsewhere:

• HTTPCookies are a commonmechanism for securing session tokens. Specific security require‑
ments for cookies can be found in the “Web Frontend Security”chapter.

• Self‑contained tokens are frequently used as a way of maintaining sessions. Specific security
requirements can be found in the “Self‑contained Tokens”chapter.

V7.1 Session Management Documentation

There is no single pattern that suits all applications. Therefore, it is not feasible to define universal
boundaries and limits that suit all cases. A risk analysis with documented security decisions related
to session handlingmust be conducted as a prerequisite to implementation and testing. This ensures
that the session management system is tailored to the specific requirements of the application.

Regardless of whether a stateful or “stateless”session mechanism is chosen, the analysis must be
complete and documented to demonstrate that the selected solution is capable of satisfying all rel‑
evant security requirements. Interaction with any Single Sign‑on (SSO) mechanisms in use should
also be considered.

Description Level

7.1.1 Verify that the user’s session inactivity timeout and absolute maximum
session lifetime are documented, are appropriate in combination with other
controls, and that the documentation includes justification for any
deviations from NIST SP 800‑63B re‑authentication requirements.

2

7.1.2 Verify that the documentation defines howmany concurrent (parallel)
sessions are allowed for one account as well as the intended behaviors and
actions to be taken when themaximum number of active sessions is reached.

2

7.1.3 Verify that all systems that create and manage user sessions as part of a
federated identity management ecosystem (such as SSO systems) are
documented along with controls to coordinate session lifetimes,
termination, and any other conditions that require re‑authentication.

2

V7.2 Fundamental Session Management Security

This section satisfies the essential requirements of secure sessions by verifying that session tokens
are securely generated and validated.

53

https://pages.nist.gov/800-63-4/

Application Security Verification Standard May 2025

Description Level

7.2.1 Verify that the application performs all session token verification using a
trusted, backend service.

1

7.2.2 Verify that the application uses either self‑contained or reference tokens that
are dynamically generated for session management, i.e. not using static API
secrets and keys.

1

7.2.3 Verify that if reference tokens are used to represent user sessions, they are
unique and generated using a cryptographically secure pseudo‑random
number generator (CSPRNG) and possess at least 128 bits of entropy.

1

7.2.4 Verify that the application generates a new session token on user
authentication, including re‑authentication, and terminates the current
session token.

1

V7.3 Session Timeout

Session timeoutmechanisms serve tominimize the window of opportunity for session hijacking and
other forms of session abuse. Timeouts must satisfy documented security decisions.

Description Level

7.3.1 Verify that there is an inactivity timeout such that re‑authentication is
enforced according to risk analysis and documented security decisions.

2

7.3.2 Verify that there is an absolute maximum session lifetime such that
re‑authentication is enforced according to risk analysis and documented
security decisions.

2

V7.4 Session Termination

Session terminationmay be handled either by the application itself or by the SSO provider if the SSO
provider is handling session management instead of the application. It may be necessary to decide
whether the SSO provider is in scopewhen considering the requirements in this section as somemay
be controlled by the provider.

Session termination should result in requiring re‑authentication and be effective across the applica‑
tion, federated login (if present), and any relying parties.

For stateful sessionmechanisms, termination typically involves invalidating the session on the back‑
end. In the case of self‑contained tokens, additional measures are required to revoke or block these
tokens, as they may otherwise remain valid until expiration.

54

Application Security Verification Standard May 2025

Description Level

7.4.1 Verify that when session termination is triggered (such as logout or
expiration), the application disallows any further use of the session. For
reference tokens or stateful sessions, this means invalidating the session
data at the application backend. Applications using self‑contained tokens
will need a solution such as maintaining a list of terminated tokens,
disallowing tokens produced before a per‑user date and time or rotating a
per‑user signing key.

1

7.4.2 Verify that the application terminates all active sessions when a user account
is disabled or deleted (such as an employee leaving the company).

1

7.4.3 Verify that the application gives the option to terminate all other active
sessions after a successful change or removal of any authentication factor
(including password change via reset or recovery and, if present, an MFA
settings update).

2

7.4.4 Verify that all pages that require authentication have easy and visible access
to logout functionality.

2

7.4.5 Verify that application administrators are able to terminate active sessions
for an individual user or for all users.

2

V7.5 Defenses Against Session Abuse

This section provides requirements to mitigate the risk posed by active sessions that are either hi‑
jacked or abused through vectors that rely on the existence and capabilities of active user sessions.
For example, usingmalicious content execution to force an authenticated victim browser to perform
an action using the victim’s session.

Note that the level‑specific guidance in the “Authentication”chapter should be taken into account
when considering requirements in this section.

Description Level

7.5.1 Verify that the application requires full re‑authentication before allowing
modifications to sensitive account attributes which may affect
authentication such as email address, phone number, MFA configuration, or
other information used in account recovery.

2

7.5.2 Verify that users are able to view and (having authenticated again with at
least one factor) terminate any or all currently active sessions.

2

55

Application Security Verification Standard May 2025

Description Level

7.5.3 Verify that the application requires further authentication with at least one
factor or secondary verification before performing highly sensitive
transactions or operations.

3

V7.6 Federated Re‑authentication

This section relates to those writing Relying Party (RP) or Identity Provider (IdP) code. These re‑
quirements are derived from the NIST SP 800‑63C for Federation & Assertions.

Description Level

7.6.1 Verify that session lifetime and termination between Relying Parties (RPs)
and Identity Providers (IdPs) behave as documented, requiring
re‑authentication as necessary such as when the maximum time between
IdP authentication events is reached.

2

7.6.2 Verify that creation of a session requires either the user’s consent or an
explicit action, preventing the creation of new application sessions without
user interaction.

2

References

For more information, see also:

• OWASPWeb Security Testing Guide: Session Management Testing
• OWASP Session Management Cheat Sheet

V8 Authorization

Control Objective

Authorization ensures that access is granted only to permitted consumers (users, servers, and other
clients). To enforce the Principle of Least Privilege (POLP), verified applications must meet the fol‑
lowing high‑level requirements:

• Document authorization rules, including decision‑making factors and environmental contexts.
• Consumers should have access only to resources permitted by their defined entitlements.

56

https://pages.nist.gov/800-63-4/sp800-63c.html
https://owasp.org/www-project-web-security-testing-guide/stable/4-Web_Application_Security_Testing/06-Session_Management_Testing
https://cheatsheetseries.owasp.org/cheatsheets/Session_Management_Cheat_Sheet.html

Application Security Verification Standard May 2025

V8.1 Authorization Documentation

Comprehensive authorization documentation is essential to ensure that security decisions are con‑
sistently applied, auditable, and aligned with organizational policies. This reduces the risk of unau‑
thorized access by making security requirements clear and actionable for developers, administra‑
tors, and testers.

Description Level

8.1.1 Verify that authorization documentation defines rules for restricting
function‑level and data‑specific access based on consumer permissions and
resource attributes.

1

8.1.2 Verify that authorization documentation defines rules for field‑level access
restrictions (both read and write) based on consumer permissions and
resource attributes. Note that these rules might depend on other attribute
values of the relevant data object, such as state or status.

2

8.1.3 Verify that the application’s documentation defines the environmental and
contextual attributes (including but not limited to, time of day, user location,
IP address, or device) that are used in the application to make security
decisions, including those pertaining to authentication and authorization.

3

8.1.4 Verify that authentication and authorization documentation defines how
environmental and contextual factors are used in decision‑making, in
addition to function‑level, data‑specific, and field‑level authorization. This
should include the attributes evaluated, thresholds for risk, and actions
taken (e.g., allow, challenge, deny, step‑up authentication).

3

V8.2 General Authorization Design

Implementing granular authorization controls at the function, data, and field levels ensures that con‑
sumers can access only what has been explicitly granted to them.

Description Level

8.2.1 Verify that the application ensures that function‑level access is restricted to
consumers with explicit permissions.

1

8.2.2 Verify that the application ensures that data‑specific access is restricted to
consumers with explicit permissions to specific data items to mitigate
insecure direct object reference (IDOR) and broken object level
authorization (BOLA).

1

57

Application Security Verification Standard May 2025

Description Level

8.2.3 Verify that the application ensures that field‑level access is restricted to
consumers with explicit permissions to specific fields to mitigate broken
object property level authorization (BOPLA).

2

8.2.4 Verify that adaptive security controls based on a consumer’s environmental
and contextual attributes (such as time of day, location, IP address, or device)
are implemented for authentication and authorization decisions, as defined
in the application’s documentation. These controls must be applied when
the consumer tries to start a new session and also during an existing session.

3

V8.3 Operation Level Authorization

The immediate application of authorization changes in the appropriate tier of an application’s archi‑
tecture is crucial to preventing unauthorized actions, especially in dynamic environments.

Description Level

8.3.1 Verify that the application enforces authorization rules at a trusted service
layer and doesn’t rely on controls that an untrusted consumer could
manipulate, such as client‑side JavaScript.

1

8.3.2 Verify that changes to values on which authorization decisions are made are
applied immediately. Where changes cannot be applied immediately, (such
as when relying on data in self‑contained tokens), there must be mitigating
controls to alert when a consumer performs an action when they are no
longer authorized to do so and revert the change. Note that this alternative
would not mitigate information leakage.

3

8.3.3 Verify that access to an object is based on the originating subject’s
(e.g. consumer’s) permissions, not on the permissions of any intermediary
or service acting on their behalf. For example, if a consumer calls a web
service using a self‑contained token for authentication, and the service then
requests data from a different service, the second service will use the
consumer’s token, rather than a machine‑to‑machine token from the first
service, to make permission decisions.

3

V8.4 Other Authorization Considerations

Additional considerations for authorization, particularly for administrative interfaces and multi‑
tenant environments, help prevent unauthorized access.

58

Application Security Verification Standard May 2025

Description Level

8.4.1 Verify that multi‑tenant applications use cross‑tenant controls to ensure
consumer operations will never affect tenants with which they do not have
permissions to interact.

2

8.4.2 Verify that access to administrative interfaces incorporates multiple layers of
security, including continuous consumer identity verification, device
security posture assessment, and contextual risk analysis, ensuring that
network location or trusted endpoints are not the sole factors for
authorization even though they may reduce the likelihood of unauthorized
access.

3

References

For more information, see also:

• OWASPWeb Security Testing Guide: Authorization
• OWASP Authorization Cheat Sheet

V9 Self‑contained Tokens

Control Objective

The concept of a self‑contained token is mentioned in the original RFC 6749 OAuth 2.0 from 2012.
It refers to a token containing data or claims on which a receiving service will rely to make security
decisions. This should be differentiated from a simple token containing only an identifier, which a
receiving service uses to look up data locally. The most common examples of self‑contained tokens
are JSONWeb Tokens (JWTs) and SAML assertions.

The use of self‑contained tokens has become very widespread, even outside of OAuth and OIDC. At
the same time, the security of this mechanism relies on the ability to validate the integrity of the
token and to ensure that the token is valid for a particular context. There are many pitfalls with this
process, and this chapter provides specific details of the mechanisms that applications should have
in place to prevent them.

V9.1 Token source and integrity

This section includes requirements to ensure that the token has been produced by a trusted party
and has not been tampered with.

59

https://owasp.org/www-project-web-security-testing-guide/stable/4-Web_Application_Security_Testing/05-Authorization_Testing
https://cheatsheetseries.owasp.org/cheatsheets/Authorization_Cheat_Sheet.html

Application Security Verification Standard May 2025

Description Level

9.1.1 Verify that self‑contained tokens are validated using their digital signature or
MAC to protect against tampering before accepting the token’s contents.

1

9.1.2 Verify that only algorithms on an allowlist can be used to create and verify
self‑contained tokens, for a given context. The allowlist must include the
permitted algorithms, ideally only either symmetric or asymmetric
algorithms, and must not include the ‘None’algorithm. If both symmetric
and asymmetric must be supported, additional controls will be needed to
prevent key confusion.

1

9.1.3 Verify that key material that is used to validate self‑contained tokens is from
trusted pre‑configured sources for the token issuer, preventing attackers
from specifying untrusted sources and keys. For JWTs and other JWS
structures, headers such as ‘jku’, ‘x5u’, and ‘jwk’must be validated against an
allowlist of trusted sources.

1

V9.2 Token content

Before making security decisions based on the content of a self‑contained token, it is necessary to
validate that the token has been presented within its validity period and that it is intended for use
by the receiving service and for the purpose for which it was presented. This helps avoid insecure
cross‑usage between different services or with different token types from the same issuer.

Specific requirements for OAuth and OIDC are covered in the dedicated chapter.

Description Level

9.2.1 Verify that, if a validity time span is present in the token data, the token and
its content are accepted only if the verification time is within this validity
time span. For example, for JWTs, the claims ‘nbf’and ‘exp’must be verified.

1

9.2.2 Verify that the service receiving a token validates the token to be the correct
type and is meant for the intended purpose before accepting the token’s
contents. For example, only access tokens can be accepted for authorization
decisions and only ID Tokens can be used for proving user authentication.

2

9.2.3 Verify that the service only accepts tokens which are intended for use with
that service (audience). For JWTs, this can be achieved by validating the ‘aud’
claim against an allowlist defined in the service.

2

60

Application Security Verification Standard May 2025

Description Level

9.2.4 Verify that, if a token issuer uses the same private key for issuing tokens to
different audiences, the issued tokens contain an audience restriction that
uniquely identifies the intended audiences. This will prevent a token from
being reused with an unintended audience. If the audience identifier is
dynamically provisioned, the token issuer must validate these audiences in
order to make sure that they do not result in audience impersonation.

2

References

For more information, see also:

• OWASP JSONWeb Token Cheat Sheet for Java Cheat Sheet (but has useful general guidance)

V10 OAuth and OIDC

Control Objective

OAuth2 (referred to as OAuth in this chapter) is an industry‑standard framework for delegated autho‑
rization. For example, using OAuth, a client application can obtain access to APIs (server resources)
on a user’s behalf, provided the user has authorized the client application to do so.

By itself, OAuth is not designed for user authentication. The OpenID Connect (OIDC) framework
extends OAuth by adding a user identity layer on top of OAuth. OIDC provides support for features
including standardized user information, Single Sign‑On (SSO), and session management. As OIDC
is an extension of OAuth, the OAuth requirements in this chapter also apply to OIDC.

The following roles are defined in OAuth:

• The OAuth client is the application that attempts to obtain access to server resources (e.g., by
calling anAPIusing the issued access token). TheOAuth client is oftena server‑side application.

– Aconfidential client is a client capable ofmaintaining the confidentiality of the credentials
it uses to authenticate itself with the authorization server.

– A public client is not capable of maintaining the confidentiality of credentials for authen‑
ticating with the authorization server. Therefore, instead of authenticating itself (e.g.,
using ‘client_id’and ‘client_secret’parameters), it only identifies itself (using a ‘client_id’
parameter).

• The OAuth resource server (RS) is the server API exposing resources to OAuth clients.
• The OAuth authorization server (AS) is a server application that issues access tokens to OAuth
clients. These access tokens allow OAuth clients to access RS resources, either on behalf of an

61

https://cheatsheetseries.owasp.org/cheatsheets/JSON_Web_Token_for_Java_Cheat_Sheet.html

Application Security Verification Standard May 2025

end‑user or on the OAuth client’s own behalf. The AS is often a separate application, but (if
appropriate) it may be integrated into a suitable RS.

• The resource owner (RO) is the end‑user who authorizes OAuth clients to obtain limited access
to resources hosted on the resource server on their behalf. The resource owner consents to
this delegated authorization by interacting with the authorization server.

The following roles are defined in OIDC:

• The relying party (RP) is the client application requesting end‑user authentication through the
OpenID Provider. It assumes the role of an OAuth client.

• The OpenID Provider (OP) is an OAuth AS that is capable of authenticating the end‑user and
provides OIDC claims to an RP. The OP may be the identity provider (IdP), but in federated
scenarios, the OP and the identity provider (where the end‑user authenticates)may be different
server applications.

OAuth and OIDC were initially designed for third‑party applications. Today, they are often used by
first‑party applications as well. However, when used in first‑party scenarios, such as authentication
and session management, the protocol adds some complexity, which may introduce new security
challenges.

OAuth and OIDC can be used for many types of applications, but the focus for ASVS and the require‑
ments in this chapter is on web applications and APIs.

Since OAuth and OIDC can be considered logic on top of web technologies, general requirements
from other chapters always apply, and this chapter cannot be taken out of context.

This chapter addresses best current practices for OAuth2 andOIDC alignedwith specifications found
at https://oauth.net/2/ and https://openid.net/developers/specs/. Even if RFCs are considered
mature, they are updated frequently. Thus, it is important to align with the latest versions when
applying the requirements in this chapter. See the references section for more details.

Given the complexity of the area, it is vitally important for a secure OAuth or OIDC solution to use
well‑known industry‑standard authorization servers and apply the recommended security configu‑
ration.

Terminology used in this chapter alignswithOAuthRFCs andOIDC specifications, but note that OIDC
terminology is only used for OIDC‑specific requirements; otherwise, OAuth terminology is used.

In the context of OAuth and OIDC, the term “token”in this chapter refers to:

• Access tokens, which shall only be consumed by the RS and can either be reference tokens that
are validated using introspection or self‑contained tokens that are validated using some key
material.

• Refresh tokens, which shall only be consumedby the authorization server that issued the token.
• OIDC ID Tokens, which shall only be consumed by the client that triggered the authorization
flow.

62

https://oauth.net/2/
https://openid.net/developers/specs/

Application Security Verification Standard May 2025

The risk levels for some of the requirements in this chapter depend on whether the client is a confi‑
dential client or regarded as a public client. Since using strong client authentication mitigates many
attack vectors, a few requirements might be relaxed when using a confidential client for L1 applica‑
tions.

V10.1 Generic OAuth and OIDC Security

This section covers generic architectural requirements that apply to all applications using OAuth or
OIDC.

Description Level

10.1.1 Verify that tokens are only sent to components that strictly need them. For
example, when using a backend‑for‑frontend pattern for browser‑based
JavaScript applications, access and refresh tokens shall only be accessible for
the backend.

2

10.1.2 Verify that the client only accepts values from the authorization server (such
as the authorization code or ID Token) if these values result from an
authorization flow that was initiated by the same user agent session and
transaction. This requires that client‑generated secrets, such as the proof
key for code exchange (PKCE) ‘code_verifier’, ‘state’or OIDC ‘nonce’, are not
guessable, are specific to the transaction, and are securely bound to both the
client and the user agent session in which the transaction was started.

2

V10.2 OAuth Client

These requirements detail the responsibilities for OAuth client applications. The client can be, for
example, a web server backend (often acting as a Backend For Frontend, BFF), a backend service
integration, or a frontend Single Page Application (SPA, aka browser‑based application).

In general, backend clients are regarded as confidential clients and frontend clients are regarded
as public clients. However, native applications running on the end‑user device can be regarded as
confidential when using OAuth dynamic client registration.

Description Level

10.2.1 Verify that, if the code flow is used, the OAuth client has protection against
browser‑based request forgery attacks, commonly known as cross‑site
request forgery (CSRF), which trigger token requests, either by using proof
key for code exchange (PKCE) functionality or checking the ‘state’parameter
that was sent in the authorization request.

2

63

Application Security Verification Standard May 2025

Description Level

10.2.2 Verify that, if the OAuth client can interact with more than one authorization
server, it has a defense against mix‑up attacks. For example, it could require
that the authorization server return the ‘iss’parameter value and validate it
in the authorization response and the token response.

2

10.2.3 Verify that the OAuth client only requests the required scopes (or other
authorization parameters) in requests to the authorization server.

3

V10.3 OAuth Resource Server

In the context of ASVS and this chapter, the resource server is an API. To provide secure access, the
resource server must:

• Validate the access token, according to the token format and relevant protocol specifications,
e.g., JWT‑validation or OAuth token introspection.

• If valid, enforce authorization decisions based on the information from the access token and
permissions which have been granted. For example, the resource server needs to verify that
the client (acting on behalf of RO) is authorized to access the requested resource.

Therefore, the requirements listed here are OAuth or OIDC specific and should be performed after
token validation and before performing authorization based on information from the token.

Description Level

10.3.1 Verify that the resource server only accepts access tokens that are intended
for use with that service (audience). The audience may be included in a
structured access token (such as the ‘aud’claim in JWT), or it can be checked
using the token introspection endpoint.

2

10.3.2 Verify that the resource server enforces authorization decisions based on
claims from the access token that define delegated authorization. If claims
such as ‘sub’, ‘scope’, and ‘authorization_details’are present, they must be
part of the decision.

2

10.3.3 Verify that if an access control decision requires identifying a unique user
from an access token (JWT or related token introspection response), the
resource server identifies the user from claims that cannot be reassigned to
other users. Typically, it means using a combination of ‘iss’and ‘sub’claims.

2

64

Application Security Verification Standard May 2025

Description Level

10.3.4 Verify that, if the resource server requires specific authentication strength,
methods, or recentness, it verifies that the presented access token satisfies
these constraints. For example, if present, using the OIDC ‘acr’, ‘amr’and
‘auth_time’claims respectively.

2

10.3.5 Verify that the resource server prevents the use of stolen access tokens or
replay of access tokens (from unauthorized parties) by requiring
sender‑constrained access tokens, either Mutual TLS for OAuth 2 or OAuth 2
Demonstration of Proof of Possession (DPoP).

3

V10.4 OAuth Authorization Server

These requirements detail the responsibilities for OAuth authorization servers, including OpenID
Providers.

For client authentication, the ‘self_signed_tls_client_auth’method is allowed with the prerequisites
required by section 2.2 of RFC 8705.

Description Level

10.4.1 Verify that the authorization server validates redirect URIs based on a
client‑specific allowlist of pre‑registered URIs using exact string comparison.

1

10.4.2 Verify that, if the authorization server returns the authorization code in the
authorization response, it can be used only once for a token request. For the
second valid request with an authorization code that has already been used
to issue an access token, the authorization server must reject a token request
and revoke any issued tokens related to the authorization code.

1

10.4.3 Verify that the authorization code is short‑lived. The maximum lifetime can
be up to 10 minutes for L1 and L2 applications and up to 1 minute for L3
applications.

1

10.4.4 Verify that for a given client, the authorization server only allows the usage
of grants that this client needs to use. Note that the grants ‘token’(Implicit
flow) and ‘password’(Resource Owner Password Credentials flow) must no
longer be used.

1

65

https://datatracker.ietf.org/doc/html/rfc8705#name-self-signed-certificate-mut
https://datatracker.ietf.org/doc/html/rfc8705

Application Security Verification Standard May 2025

Description Level

10.4.5 Verify that the authorization server mitigates refresh token replay attacks for
public clients, preferably using sender‑constrained refresh tokens, i.e.,
Demonstrating Proof of Possession (DPoP) or Certificate‑Bound Access
Tokens using mutual TLS (mTLS). For L1 and L2 applications, refresh token
rotation may be used. If refresh token rotation is used, the authorization
server must invalidate the refresh token after usage, and revoke all refresh
tokens for that authorization if an already used and invalidated refresh token
is provided.

1

10.4.6 Verify that, if the code grant is used, the authorization server mitigates
authorization code interception attacks by requiring proof key for code
exchange (PKCE). For authorization requests, the authorization server must
require a valid ‘code_challenge’value and must not accept a
‘code_challenge_method’value of ‘plain’. For a token request, it must require
validation of the ‘code_verifier’parameter.

2

10.4.7 Verify that if the authorization server supports unauthenticated dynamic
client registration, it mitigates the risk of malicious client applications. It
must validate client metadata such as any registered URIs, ensure the user’s
consent, and warn the user before processing an authorization request with
an untrusted client application.

2

10.4.8 Verify that refresh tokens have an absolute expiration, including if sliding
refresh token expiration is applied.

2

10.4.9 Verify that refresh tokens and reference access tokens can be revoked by an
authorized user using the authorization server user interface, to mitigate the
risk of malicious clients or stolen tokens.

2

10.4.10 Verify that confidential client is authenticated for client‑to‑authorized server
backchannel requests such as token requests, pushed authorization requests
(PAR), and token revocation requests.

2

10.4.11 Verify that the authorization server configuration only assigns the required
scopes to the OAuth client.

2

10.4.12 Verify that for a given client, the authorization server only allows the
‘response_mode’value that this client needs to use. For example, by having
the authorization server validate this value against the expected values or by
using pushed authorization request (PAR) or JWT‑secured Authorization
Request (JAR).

3

10.4.13 Verify that grant type ‘code’is always used together with pushed
authorization requests (PAR).

3

66

Application Security Verification Standard May 2025

Description Level

10.4.14 Verify that the authorization server issues only sender‑constrained
(Proof‑of‑Possession) access tokens, either with certificate‑bound access
tokens using mutual TLS (mTLS) or DPoP‑bound access tokens
(Demonstration of Proof of Possession).

3

10.4.15 Verify that, for a server‑side client (which is not executed on the end‑user
device), the authorization server ensures that the ‘authorization_details’
parameter value is from the client backend and that the user has not
tampered with it. For example, by requiring the usage of pushed
authorization request (PAR) or JWT‑secured Authorization Request (JAR).

3

10.4.16 Verify that the client is confidential and the authorization server requires the
use of strong client authentication methods (based on public‑key
cryptography and resistant to replay attacks), such as mutual TLS (
‘tls_client_auth’, ‘self_signed_tls_client_auth’) or private key JWT (
‘private_key_jwt’).

3

V10.5 OIDC Client

As the OIDC relying party acts as an OAuth client, the requirements from the section “OAuth Client”
apply as well.

Note that the “Authentication with an Identity Provider”section in the “Authentication”chapter also
contains relevant general requirements.

Description Level

10.5.1 Verify that the client (as the relying party) mitigates ID Token replay attacks.
For example, by ensuring that the ‘nonce’claim in the ID Token matches the
‘nonce’value sent in the authentication request to the OpenID Provider (in
OAuth2 refereed to as the authorization request sent to the authorization
server).

2

10.5.2 Verify that the client uniquely identifies the user from ID Token claims,
usually the ‘sub’claim, which cannot be reassigned to other users (for the
scope of an identity provider).

2

10.5.3 Verify that the client rejects attempts by a malicious authorization server to
impersonate another authorization server through authorization server
metadata. The client must reject authorization server metadata if the issuer
URL in the authorization server metadata does not exactly match the
pre‑configured issuer URL expected by the client.

2

67

Application Security Verification Standard May 2025

Description Level

10.5.4 Verify that the client validates that the ID Token is intended to be used for
that client (audience) by checking that the ‘aud’claim from the token is equal
to the ‘client_id’value for the client.

2

10.5.5 Verify that, when using OIDC back‑channel logout, the relying party
mitigates denial of service through forced logout and cross‑JWT confusion in
the logout flow. The client must verify that the logout token is correctly typed
with a value of ‘logout+jwt’, contains the ‘event’claim with the correct
member name, and does not contain a ‘nonce’claim. Note that it is also
recommended to have a short expiration (e.g., 2 minutes).

2

V10.6 OpenID Provider

As OpenID Providers act as OAuth authorization servers, the requirements from the section “OAuth
Authorization Server”apply as well.

Note that if using the ID Token flow (not the code flow), no access tokens are issued, andmany of the
requirements for OAuth AS are not applicable.

Description Level

10.6.1 Verify that the OpenID Provider only allows values ‘code’, ‘ciba’, ‘id_token’,
or ‘id_token code’for response mode. Note that ‘code’is preferred over
‘id_token code’(the OIDC Hybrid flow), and ‘token’(any Implicit flow) must
not be used.

2

10.6.2 Verify that the OpenID Provider mitigates denial of service through forced
logout. By obtaining explicit confirmation from the end‑user or, if present,
validating parameters in the logout request (initiated by the relying party),
such as the ‘id_token_hint’.

2

V10.7 Consent Management

These requirements cover the verification of the user’s consent by the authorization server. With‑
out proper user consent verification, a malicious actor may obtain permissions on the user’s behalf
through spoofing or social‑engineering.

68

Application Security Verification Standard May 2025

Description Level

10.7.1 Verify that the authorization server ensures that the user consents to each
authorization request. If the identity of the client cannot be assured, the
authorization server must always explicitly prompt the user for consent.

2

10.7.2 Verify that when the authorization server prompts for user consent, it
presents sufficient and clear information about what is being consented to.
When applicable, this should include the nature of the requested
authorizations (typically based on scope, resource server, Rich Authorization
Requests (RAR) authorization details), the identity of the authorized
application, and the lifetime of these authorizations.

2

10.7.3 Verify that the user can review, modify, and revoke consents which the user
has granted through the authorization server.

2

References

For more information on OAuth, please see:

• oauth.net
• OWASP OAuth 2.0 Protocol Cheat Sheet

For OAuth‑related requirements in ASVS following published and in draft status RFC‑s are used:

• RFC6749 The OAuth 2.0 Authorization Framework
• RFC6750 The OAuth 2.0 Authorization Framework: Bearer Token Usage
• RFC6819 OAuth 2.0 Threat Model and Security Considerations
• RFC7636 Proof Key for Code Exchange by OAuth Public Clients
• RFC7591 OAuth 2.0 Dynamic Client Registration Protocol
• RFC8628 OAuth 2.0 Device Authorization Grant
• RFC8707 Resource Indicators for OAuth 2.0
• RFC9068 JSONWeb Token (JWT) Profile for OAuth 2.0 Access Tokens
• RFC9126 OAuth 2.0 Pushed Authorization Requests
• RFC9207 OAuth 2.0 Authorization Server Issuer Identification
• RFC9396 OAuth 2.0 Rich Authorization Requests
• RFC9449 OAuth 2.0 Demonstrating Proof of Possession (DPoP)
• RFC9700 Best Current Practice for OAuth 2.0 Security
• draft OAuth 2.0 for Browser‑Based Applications
• draft The OAuth 2.1 Authorization Framework

For more information on OpenID Connect, please see:

• OpenID Connect Core 1.0

69

https://oauth.net/
https://cheatsheetseries.owasp.org/cheatsheets/OAuth2_Cheat_Sheet.html
https://datatracker.ietf.org/doc/html/rfc6749
https://datatracker.ietf.org/doc/html/rfc6750
https://datatracker.ietf.org/doc/html/rfc6819
https://datatracker.ietf.org/doc/html/rfc7636
https://datatracker.ietf.org/doc/html/rfc7591
https://datatracker.ietf.org/doc/html/rfc8628
https://datatracker.ietf.org/doc/html/rfc8707
https://datatracker.ietf.org/doc/html/rfc9068
https://datatracker.ietf.org/doc/html/rfc9126
https://datatracker.ietf.org/doc/html/rfc9207
https://datatracker.ietf.org/doc/html/rfc9396
https://datatracker.ietf.org/doc/html/rfc9449
https://datatracker.ietf.org/doc/html/rfc9700
https://datatracker.ietf.org/doc/html/draft-ietf-oauth-browser-based-apps
https://datatracker.ietf.org/doc/html/draft-ietf-oauth-v2-1-12
https://openid.net/specs/openid-connect-core-1_0.html

Application Security Verification Standard May 2025

• FAPI 2.0 Security Profile

V11 Cryptography

Control Objective

The objective of this chapter is to define best practices for the general use of cryptography, as well as
to instill a fundamental understanding of cryptographic principles and inspire a shift toward more
resilient and modern approaches. It encourages the following:

• Implementing robust cryptographic systems that fail securely, adapt to evolving threats, and
are future‑proof.

• Utilizing cryptographic mechanisms that are both secure and aligned with industry best prac‑
tices.

• Maintaining a secure cryptographic key management system with appropriate access controls
and auditing.

• Regularly evaluating the cryptographic landscape to assess new risks and adapt algorithms ac‑
cordingly.

• Discovering and managing cryptographic use cases throughout the application’s lifecycle to
ensure that all cryptographic assets are accounted for and secured.

In addition to outlining general principles and best practices, this document also provides more in‑
depth technical information about the requirements in Appendix C ‑ Cryptography Standards. This
includes algorithms andmodes that are considered “approved”for the purposes of the requirements
in this chapter.

Requirements that use cryptography to solve a separate problem, such as secrets management or
communications security, will be in different parts of the standard.

V11.1 Cryptographic Inventory and Documentation

Applications need to be designed with strong cryptographic architecture to protect data assets ac‑
cording to their classification. Encrypting everything is wasteful; not encrypting anything is legally
negligent. A balancemust be struck, usually during architectural or high‑level design, design sprints,
or architectural spikes. Designing cryptography “on the fly”or retrofitting it will inevitably costmuch
more to implement securely than simply building it in from the start.

It is important to ensure that all cryptographic assets are regularly discovered, inventoried, and as‑
sessed. Please see the appendix for more information on how this can be done.

The need to future‑proof cryptographic systems against the eventual rise of quantum computing
is also critical. Post‑Quantum Cryptography (PQC) refers to cryptographic algorithms designed to

70

https://openid.net/specs/fapi-security-profile-2_0-final.html

Application Security Verification Standard May 2025

remain secure against attacks by quantum computers, which are expected to break widely used al‑
gorithms such as RSA and elliptic curve cryptography (ECC).

Please see the appendix for current guidance on vetted PQC primitives and standards.

Description Level

11.1.1 Verify that there is a documented policy for management of cryptographic
keys and a cryptographic key lifecycle that follows a key management
standard such as NIST SP 800‑57. This should include ensuring that keys are
not overshared (for example, with more than two entities for shared secrets
and more than one entity for private keys).

2

11.1.2 Verify that a cryptographic inventory is performed, maintained, regularly
updated, and includes all cryptographic keys, algorithms, and certificates
used by the application. It must also document where keys can and cannot
be used in the system, and the types of data that can and cannot be protected
using the keys.

2

11.1.3 Verify that cryptographic discovery mechanisms are employed to identify all
instances of cryptography in the system, including encryption, hashing, and
signing operations.

3

11.1.4 Verify that a cryptographic inventory is maintained. This must include a
documented plan that outlines the migration path to new cryptographic
standards, such as post‑quantum cryptography, in order to react to future
threats.

3

V11.2 Secure Cryptography Implementation

This section defines the requirements for the selection, implementation, and ongoing management
of core cryptographic algorithms for an application. The objective is to ensure that only robust,
industry‑accepted cryptographic primitives are deployed, in alignment with current standards (e.g.,
NIST, ISO/IEC) and best practices. Organizations must ensure that each cryptographic component
is selected based on peer‑reviewed evidence and practical security testing.

Description Level

11.2.1 Verify that industry‑validated implementations (including libraries and
hardware‑accelerated implementations) are used for cryptographic
operations.

2

71

Application Security Verification Standard May 2025

Description Level

11.2.2 Verify that the application is designed with crypto agility such that random
number, authenticated encryption, MAC, or hashing algorithms, key
lengths, rounds, ciphers and modes can be reconfigured, upgraded, or
swapped at any time, to protect against cryptographic breaks. Similarly, it
must also be possible to replace keys and passwords and re‑encrypt data.
This will allow for seamless upgrades to post‑quantum cryptography (PQC),
once high‑assurance implementations of approved PQC schemes or
standards are widely available.

2

11.2.3 Verify that all cryptographic primitives utilize a minimum of 128‑bits of
security based on the algorithm, key size, and configuration. For example, a
256‑bit ECC key provides roughly 128 bits of security where RSA requires a
3072‑bit key to achieve 128 bits of security.

2

11.2.4 Verify that all cryptographic operations are constant‑time, with no
‘short‑circuit’operations in comparisons, calculations, or returns, to avoid
leaking information.

3

11.2.5 Verify that all cryptographic modules fail securely, and errors are handled in
a way that does not enable vulnerabilities, such as Padding Oracle attacks.

3

V11.3 Encryption Algorithms

Authenticated encryption algorithms built on AES and CHACHA20 form the backbone of modern
cryptographic practice.

Description Level

11.3.1 Verify that insecure block modes (e.g., ECB) and weak padding schemes
(e.g., PKCS#1 v1.5) are not used.

1

11.3.2 Verify that only approved ciphers andmodes such as AES with GCM are used. 1

11.3.3 Verify that encrypted data is protected against unauthorized modification
preferably by using an approved authenticated encryption method or by
combining an approved encryption method with an approved MAC
algorithm.

2

11.3.4 Verify that nonces, initialization vectors, and other single‑use numbers are
not used for more than one encryption key and data‑element pair. The
method of generation must be appropriate for the algorithm being used.

3

72

Application Security Verification Standard May 2025

Description Level

11.3.5 Verify that any combination of an encryption algorithm and a MAC
algorithm is operating in encrypt‑then‑MACmode.

3

V11.4 Hashing and Hash‑based Functions

Cryptographichashes areused in awide variety of cryptographicprotocols, suchasdigital signatures,
HMAC, key derivation functions (KDF), random bit generation, and password storage. The security
of the cryptographic system is only as strong as the underlying hash functions used. This section
outlines the requirements for using secure hash functions in cryptographic operations.

For password storage, as well as the cryptography appendix, the OWASP Password Storage Cheat
Sheet will also provide useful context and guidance.

Description Level

11.4.1 Verify that only approved hash functions are used for general cryptographic
use cases, including digital signatures, HMAC, KDF, and random bit
generation. Disallowed hash functions, such as MD5, must not be used for
any cryptographic purpose.

1

11.4.2 Verify that passwords are stored using an approved, computationally
intensive, key derivation function (also known as a “password hashing
function”), with parameter settings configured based on current guidance.
The settings should balance security and performance to make brute‑force
attacks sufficiently challenging for the required level of security.

2

11.4.3 Verify that hash functions used in digital signatures, as part of data
authentication or data integrity are collision resistant and have appropriate
bit‑lengths. If collision resistance is required, the output length must be at
least 256 bits. If only resistance to second pre‑image attacks is required, the
output length must be at least 128 bits.

2

11.4.4 Verify that the application uses approved key derivation functions with key
stretching parameters when deriving secret keys from passwords. The
parameters in use must balance security and performance to prevent
brute‑force attacks from compromising the resulting cryptographic key.

2

V11.5 Random Values

Cryptographically secure Pseudo‑randomNumber Generation (CSPRNG) is incredibly difficult to get
right. Generally, good sources of entropy within a system will be quickly depleted if over‑used, but

73

https://cheatsheetseries.owasp.org/cheatsheets/Password_Storage_Cheat_Sheet.html#password-hashing-algorithms
https://cheatsheetseries.owasp.org/cheatsheets/Password_Storage_Cheat_Sheet.html#password-hashing-algorithms

Application Security Verification Standard May 2025

sources with less randomness can lead to predictable keys and secrets.

Description Level

11.5.1 Verify that all random numbers and strings which are intended to be
non‑guessable must be generated using a cryptographically secure
pseudo‑random number generator (CSPRNG) and have at least 128 bits of
entropy. Note that UUIDs do not respect this condition.

2

11.5.2 Verify that the random number generation mechanism in use is designed to
work securely, even under heavy demand.

3

V11.6 Public Key Cryptography

Public Key Cryptography will be used where it is not possible or not desirable to share a secret key
between multiple parties.

As part of this, there exists a need for approved key exchange mechanisms, such as Diffie‑Hellman
and Elliptic Curve Diffie‑Hellman (ECDH) to ensure that the cryptosystem remains secure against
modern threats. The “Secure Communication”chapter provides requirements for TLS so the require‑
ments in this section are intended for situations where Public Key Cryptography is being used in use
cases other than TLS.

Description Level

11.6.1 Verify that only approved cryptographic algorithms and modes of operation
are used for key generation and seeding, and digital signature generation
and verification. Key generation algorithms must not generate insecure keys
vulnerable to known attacks, for example, RSA keys which are vulnerable to
Fermat factorization.

2

11.6.2 Verify that approved cryptographic algorithms are used for key exchange
(such as Diffie‑Hellman) with a focus on ensuring that key exchange
mechanisms use secure parameters. This will prevent attacks on the key
establishment process which could lead to adversary‑in‑the‑middle attacks
or cryptographic breaks.

3

V11.7 In‑Use Data Cryptography

Protecting data while it is being processed is paramount. Techniques such as full memory encryp‑
tion, encryption of data in transit, and ensuring data is encrypted as quickly as possible after use is
recommended.

74

Application Security Verification Standard May 2025

Description Level

11.7.1 Verify that full memory encryption is in use that protects sensitive data
while it is in use, preventing access by unauthorized users or processes.

3

11.7.2 Verify that data minimization ensures the minimal amount of data is
exposed during processing, and ensure that data is encrypted immediately
after use or as soon as feasible.

3

References

For more information, see also:

• OWASPWeb Security Testing Guide: Testing for Weak Cryptography
• OWASP Cryptographic Storage Cheat Sheet
• FIPS 140‑3
• NIST SP 800‑57

V12 Secure Communication

Control Objective

This chapter includes requirements related to the specific mechanisms that should be in place to
protect data in transit, both between an end‑user client and a backend service, as well as between
internal and backend services.

The general concepts promoted by this chapter include:

• Ensuring that communications are encrypted externally, and ideally internally as well.
• Configuring encryptionmechanisms using the latest guidance, including preferred algorithms
and ciphers.

• Ensuring that communications are not being intercepted by unauthorized parties through the
use of signed certificates.

In addition to outlining general principles and best practices, the ASVS also provides more in‑depth
technical information about cryptographic strength in Appendix C ‑ Cryptography Standards.

V12.1 General TLS Security Guidance

This sectionprovides initial guidance onhow to secureTLS communications. Up‑to‑date tools should
be used to review TLS configuration on an ongoing basis.

75

https://owasp.org/www-project-web-security-testing-guide/stable/4-Web_Application_Security_Testing/09-Testing_for_Weak_Cryptography
https://cheatsheetseries.owasp.org/cheatsheets/Cryptographic_Storage_Cheat_Sheet.html
https://csrc.nist.gov/pubs/fips/140-3/final
https://csrc.nist.gov/publications/detail/sp/800-57-part-1/rev-5/final

Application Security Verification Standard May 2025

While the use of wildcard TLS certificates is not inherently insecure, a compromise of a certificate
that is deployed across all owned environments (e.g., production, staging, development, and test)
may lead to a compromise of the security posture of the applications using it. Proper protection,
management, and the use of separate TLS certificates in different environments should be employed
if possible.

Description Level

12.1.1 Verify that only the latest recommended versions of the TLS protocol are
enabled, such as TLS 1.2 and TLS 1.3. The latest version of the TLS protocol
must be the preferred option.

1

12.1.2 Verify that only recommended cipher suites are enabled, with the strongest
cipher suites set as preferred. L3 applications must only support cipher
suites which provide forward secrecy.

2

12.1.3 Verify that the application validates that mTLS client certificates are trusted
before using the certificate identity for authentication or authorization.

2

12.1.4 Verify that proper certification revocation, such as Online Certificate Status
Protocol (OCSP) Stapling, is enabled and configured.

3

12.1.5 Verify that Encrypted Client Hello (ECH) is enabled in the application’s TLS
settings to prevent exposure of sensitive metadata, such as the Server Name
Indication (SNI), during TLS handshake processes.

3

V12.2 HTTPS Communication with External Facing Services

Ensure all HTTP traffic to external‑facing services which the application exposes is sent encrypted,
with publicly trusted certificates.

Description Level

12.2.1 Verify that TLS is used for all connectivity between a client and external
facing, HTTP‑based services, and does not fall back to insecure or
unencrypted communications.

1

12.2.2 Verify that external facing services use publicly trusted TLS certificates. 1

V12.3 General Service to Service Communication Security

Server communications (both internal and external) involve more than just HTTP. Connections to
and from other systems must also be secure, ideally using TLS.

76

Application Security Verification Standard May 2025

Description Level

12.3.1 Verify that an encrypted protocol such as TLS is used for all inbound and
outbound connections to and from the application, including monitoring
systems, management tools, remote access and SSH, middleware, databases,
mainframes, partner systems, or external APIs. The server must not fall
back to insecure or unencrypted protocols.

2

12.3.2 Verify that TLS clients validate certificates received before communicating
with a TLS server.

2

12.3.3 Verify that TLS or another appropriate transport encryption mechanism
used for all connectivity between internal, HTTP‑based services within the
application, and does not fall back to insecure or unencrypted
communications.

2

12.3.4 Verify that TLS connections between internal services use trusted
certificates. Where internally generated or self‑signed certificates are used,
the consuming service must be configured to only trust specific internal CAs
and specific self‑signed certificates.

2

12.3.5 Verify that services communicating internally within a system (intra‑service
communications) use strong authentication to ensure that each endpoint is
verified. Strong authentication methods, such as TLS client authentication,
must be employed to ensure identity, using public‑key infrastructure and
mechanisms that are resistant to replay attacks. For microservice
architectures, consider using a service mesh to simplify certificate
management and enhance security.

3

References

For more information, see also:

• OWASP ‑ Transport Layer Security Cheat Sheet
• Mozilla’s Server Side TLS configuration guide
• Mozilla’s tool to generate known good TLS configurations.
• O‑Saft ‑ OWASP Project to validate TLS configuration

V13 Configuration

Control Objective

The application’s default configuration must be secure for use on the Internet.

77

https://cheatsheetseries.owasp.org/cheatsheets/Transport_Layer_Security_Cheat_Sheet.html
https://wiki.mozilla.org/Security/Server_Side_TLS
https://ssl-config.mozilla.org/
https://owasp.org/www-project-o-saft/

Application Security Verification Standard May 2025

This chapter provides guidance on the various configurations necessary to achieve this, including
those applied during development, build, and deployment.

Topics covered include preventing data leakage, securely managing communication between com‑
ponents, and protecting secrets.

V13.1 Configuration Documentation

This section outlines documentation requirements for how the application communicates with in‑
ternal and external services, as well as techniques to prevent loss of availability due to service inac‑
cessibility. It also addresses documentation related to secrets.

Description Level

13.1.1 Verify that all communication needs for the application are documented.
This must include external services which the application relies upon and
cases where an end user might be able to provide an external location to
which the application will then connect.

2

13.1.2 Verify that for each service the application uses, the documentation defines
the maximum number of concurrent connections (e.g., connection pool
limits) and how the application behaves when that limit is reached,
including any fallback or recovery mechanisms, to prevent denial of service
conditions.

3

13.1.3 Verify that the application documentation defines resource‑management
strategies for every external system or service it uses (e.g., databases, file
handles, threads, HTTP connections). This should include resource‑release
procedures, timeout settings, failure handling, and where retry logic is
implemented, specifying retry limits, delays, and back‑off algorithms. For
synchronous HTTP request–response operations it should mandate short
timeouts and either disable retries or strictly limit retries to prevent
cascading delays and resource exhaustion.

3

13.1.4 Verify that the application’s documentation defines the secrets that are
critical for the security of the application and a schedule for rotating them,
based on the organization’s threat model and business requirements.

3

V13.2 Backend Communication Configuration

Applications interact with multiple services, including APIs, databases, or other components. These
may be considered internal to the application but not included in the application’s standard access
control mechanisms, or theymay be entirely external. In either case, it is necessary to configure the
application to interact securelywith these components and, if required, protect that configuration.

78

Application Security Verification Standard May 2025

Note: The “Secure Communication”chapter provides guidance for encryption in transit.

Description Level

13.2.1 Verify that communications between backend application components that
don’t support the application’s standard user session mechanism, including
APIs, middleware, and data layers, are authenticated. Authentication must
use individual service accounts, short‑term tokens, or certificate‑based
authentication and not unchanging credentials such as passwords, API keys,
or shared accounts with privileged access.

2

13.2.2 Verify that communications between backend application components,
including local or operating system services, APIs, middleware, and data
layers, are performed with accounts assigned the least necessary privileges.

2

13.2.3 Verify that if a credential has to be used for service authentication, the
credential being used by the consumer is not a default credential (e.g.,
root/root or admin/admin).

2

13.2.4 Verify that an allowlist is used to define the external resources or systems
with which the application is permitted to communicate (e.g., for outbound
requests, data loads, or file access). This allowlist can be implemented at the
application layer, web server, firewall, or a combination of different layers.

2

13.2.5 Verify that the web or application server is configured with an allowlist of
resources or systems to which the server can send requests or load data or
files from.

2

13.2.6 Verify that where the application connects to separate services, it follows the
documented configuration for each connection, such as maximum parallel
connections, behavior when maximum allowed connections is reached,
connection timeouts, and retry strategies.

3

V13.3 Secret Management

Secret management is an essential configuration task to ensure the protection of data used in the
application. Specific requirements for cryptography can be found in the “Cryptography”chapter, but
this section focuses on the management and handling aspects of secrets.

79

Application Security Verification Standard May 2025

Description Level

13.3.1 Verify that a secrets management solution, such as a key vault, is used to
securely create, store, control access to, and destroy backend secrets. These
could include passwords, key material, integrations with databases and
third‑party systems, keys and seeds for time‑based tokens, other internal
secrets, and API keys. Secrets must not be included in application source
code or included in build artifacts. For an L3 application, this must involve a
hardware‑backed solution such as an HSM.

2

13.3.2 Verify that access to secret assets adheres to the principle of least privilege. 2

13.3.3 Verify that all cryptographic operations are performed using an isolated
security module (such as a vault or hardware security module) to securely
manage and protect key material from exposure outside of the security
module.

3

13.3.4 Verify that secrets are configured to expire and be rotated based on the
application’s documentation.

3

V13.4 Unintended Information Leakage

Production configurations should be hardened to avoid disclosing unnecessary data. Many of these
issues are rarely rated as significant risks but are often chained with other vulnerabilities. If these
issues are not present by default, it raises the bar for attacking an application.

For example, hiding the version of server‑side components does not eliminate the need to patch all
components, and disabling folder listing does not remove the need to use authorization controls or
keep files away from the public folder, but it raises the bar.

Description Level

13.4.1 Verify that the application is deployed either without any source control
metadata, including the .git or .svn folders, or in a way that these folders are
inaccessible both externally and to the application itself.

1

13.4.2 Verify that debug modes are disabled for all components in production
environments to prevent exposure of debugging features and information
leakage.

2

13.4.3 Verify that web servers do not expose directory listings to clients unless
explicitly intended.

2

13.4.4 Verify that using the HTTP TRACE method is not supported in production
environments, to avoid potential information leakage.

2

80

Application Security Verification Standard May 2025

Description Level

13.4.5 Verify that documentation (such as for internal APIs) and monitoring
endpoints are not exposed unless explicitly intended.

2

13.4.6 Verify that the application does not expose detailed version information of
backend components.

3

13.4.7 Verify that the web tier is configured to only serve files with specific file
extensions to prevent unintentional information, configuration, and source
code leakage.

3

References

For more information, see also:

• OWASPWeb Security Testing Guide: Configuration and Deployment Management Testing

V14 Data Protection

Control Objective

Applications cannot account for all usage patterns and user behaviors, and should therefore imple‑
ment controls to limit unauthorized access to sensitive data on client devices.

This chapter includes requirements related to definingwhat data needs to be protected, how it should
be protected, and specific mechanisms to implement or pitfalls to avoid.

Another consideration for data protection is bulk extraction, modification, or excessive usage. Each
system’s requirements are likely to be very different, so determining what is “abnormal”must con‑
sider the threatmodel andbusiness risk. FromanASVSperspective, detecting these issues is handled
in the “Security Logging and Error Handling”chapter, and setting limits is handled in the “Validation
and Business Logic”chapter.

V14.1 Data Protection Documentation

A key prerequisite for being able to protect data is to categorize what data should be considered
sensitive. There are likely to be several different levels of sensitivity, and for each level, the controls
required to protect data at that level will be different.

There are various privacy regulations and laws that affect how applications must approach the stor‑
age, use, and transmission of sensitive personal information. This sectionno longer tries to duplicate

81

https://owasp.org/www-project-web-security-testing-guide/stable/4-Web_Application_Security_Testing/02-Configuration_and_Deployment_Management_Testing

Application Security Verification Standard May 2025

these types of data protection or privacy legislation, but rather focuses on key technical considera‑
tions for protecting sensitive data. Please consult local laws and regulations, and consult a qualified
privacy specialist or lawyer as required.

Description Level

14.1.1 Verify that all sensitive data created and processed by the application has
been identified and classified into protection levels. This includes data that is
only encoded and therefore easily decoded, such as Base64 strings or the
plaintext payload inside a JWT. Protection levels need to take into account
any data protection and privacy regulations and standards which the
application is required to comply with.

2

14.1.2 Verify that all sensitive data protection levels have a documented set of
protection requirements. This must include (but not be limited to)
requirements related to general encryption, integrity verification, retention,
how the data is to be logged, access controls around sensitive data in logs,
database‑level encryption, privacy and privacy‑enhancing technologies to be
used, and other confidentiality requirements.

2

V14.2 General Data Protection

This section contains various practical requirements related to the protection of data. Most are spe‑
cific to particular issues such as unintended data leakage, but there is also a general requirement to
implement protection controls based on the protection level required for each data item.

Description Level

14.2.1 Verify that sensitive data is only sent to the server in the HTTP message body
or header fields, and that the URL and query string do not contain sensitive
information, such as an API key or session token.

1

14.2.2 Verify that the application prevents sensitive data from being cached in
server components, such as load balancers and application caches, or
ensures that the data is securely purged after use.

2

14.2.3 Verify that defined sensitive data is not sent to untrusted parties (e.g., user
trackers) to prevent unwanted collection of data outside of the application’s
control.

2

82

Application Security Verification Standard May 2025

Description Level

14.2.4 Verify that controls around sensitive data related to encryption, integrity
verification, retention, how the data is to be logged, access controls around
sensitive data in logs, privacy and privacy‑enhancing technologies, are
implemented as defined in the documentation for the specific data’s
protection level.

2

14.2.5 Verify that caching mechanisms are configured to only cache responses
which have the expected content type for that resource and do not contain
sensitive, dynamic content. The web server should return a 404 or 302
response when a non‑existent file is accessed rather than returning a
different, valid file. This should prevent Web Cache Deception attacks.

3

14.2.6 Verify that the application only returns the minimum required sensitive data
for the application’s functionality. For example, only returning some of the
digits of a credit card number and not the full number. If the complete data
is required, it should be masked in the user interface unless the user
specifically views it.

3

14.2.7 Verify that sensitive information is subject to data retention classification,
ensuring that outdated or unnecessary data is deleted automatically, on a
defined schedule, or as the situation requires.

3

14.2.8 Verify that sensitive information is removed from the metadata of
user‑submitted files unless storage is consented to by the user.

3

V14.3 Client‑side Data Protection

This section contains requirements preventing data from leaking in specificways at the client or user
agent side of an application.

Description Level

14.3.1 Verify that authenticated data is cleared from client storage, such as the
browser DOM, after the client or session is terminated. The ‘Clear‑Site‑Data’
HTTP response header field may be able to help with this but the client‑side
should also be able to clear up if the server connection is not available when
the session is terminated.

1

14.3.2 Verify that the application sets sufficient anti‑caching HTTP response header
fields (i.e., Cache‑Control: no‑store) so that sensitive data is not cached in
browsers.

2

83

Application Security Verification Standard May 2025

Description Level

14.3.3 Verify that data stored in browser storage (such as localStorage,
sessionStorage, IndexedDB, or cookies) does not contain sensitive data, with
the exception of session tokens.

2

References

For more information, see also:

• Consider using the Security Headers website to check security and anti‑caching header fields
• Documentation about anti‑caching headers by Mozilla
• OWASP Secure Headers project
• OWASP Privacy Risks Project
• OWASP User Privacy Protection Cheat Sheet
• Australian Privacy Principle 11 ‑ Security of personal information
• European Union General Data Protection Regulation (GDPR) overview
• European Union Data Protection Supervisor ‑ Internet Privacy Engineering Network
• Information on the “Clear‑Site‑Data”header
• White paper on Web Cache Deception

V15 Secure Coding and Architecture

Control Objective

Many ASVS requirements either relate to a particular area of security, such as authentication or au‑
thorization, or pertain to a particular type of application functionality, such as logging or file han‑
dling.

This chapter provides general security requirements to consider when designing and developing ap‑
plications. These requirements focus not only on clean architecture and code quality but also on
specific architecture and coding practices necessary for application security.

V15.1 Secure Coding and Architecture Documentation

Many requirements for establishing a secure and defensible architecture depend on clear documen‑
tation of decisions made regarding the implementation of specific security controls and the compo‑
nents used within the application.

This section outlines the documentation requirements, including identifying components consid‑
ered to contain “dangerous functionality”or to be “risky components.”

84

https://securityheaders.com/
https://developer.mozilla.org/en-US/docs/Web/HTTP/Caching
https://owasp.org/www-project-secure-headers/
https://owasp.org/www-project-top-10-privacy-risks/
https://cheatsheetseries.owasp.org/cheatsheets/User_Privacy_Protection_Cheat_Sheet.html
https://www.oaic.gov.au/privacy/australian-privacy-principles/australian-privacy-principles-guidelines/chapter-11-app-11-security-of-personal-information
https://www.edps.europa.eu/data-protection_en
https://www.edps.europa.eu/data-protection/ipen-internet-privacy-engineering-network_en
https://developer.mozilla.org/en-US/docs/Web/HTTP/Headers/Clear-Site-Data
https://www.blackhat.com/docs/us-17/wednesday/us-17-Gil-Web-Cache-Deception-Attack-wp.pdf

Application Security Verification Standard May 2025

A component with “dangerous functionality”may be an internally developed or third‑party compo‑
nent that performs operations such as deserialization of untrusted data, raw file or binary data pars‑
ing, dynamic code execution, or direct memory manipulation. Vulnerabilities in these types of op‑
erations pose a high risk of compromising the application and potentially exposing its underlying
infrastructure.

A “risky component”is a 3rd party library (i.e., not internally developed) with missing or poorly im‑
plemented security controls around its development processes or functionality. Examples include
components that are poorly maintained, unsupported, at the end‑of‑life stage, or have a history of
significant vulnerabilities.

This section also emphasizes the importance of defining appropriate timeframes for addressing vul‑
nerabilities in third‑party components.

Description Level

15.1.1 Verify that application documentation defines risk based remediation time
frames for 3rd party component versions with vulnerabilities and for
updating libraries in general, to minimize the risk from these components.

1

15.1.2 Verify that an inventory catalog, such as software bill of materials (SBOM), is
maintained of all third‑party libraries in use, including verifying that
components come from pre‑defined, trusted, and continually maintained
repositories.

2

15.1.3 Verify that the application documentation identifies functionality which is
time‑consuming or resource‑demanding. This must include how to prevent
a loss of availability due to overusing this functionality and how to avoid a
situation where building a response takes longer than the consumer’s
timeout. Potential defenses may include asynchronous processing, using
queues, and limiting parallel processes per user and per application.

2

15.1.4 Verify that application documentation highlights third‑party libraries which
are considered to be “risky components”.

3

15.1.5 Verify that application documentation highlights parts of the application
where “dangerous functionality”is being used.

3

V15.2 Security Architecture and Dependencies

This section includes requirements for handling risky, outdated, or insecure dependencies and com‑
ponents through dependency management.

It also includes using architectural‑level techniques such as sandboxing, encapsulation, container‑
ization, and network isolation to reduce the impact of using “dangerous operations”or “risky compo‑

85

Application Security Verification Standard May 2025

nents”(as defined in the previous section) and prevent loss of availability due to overusing resource‑
demanding functionality.

Description Level

15.2.1 Verify that the application only contains components which have not
breached the documented update and remediation time frames.

1

15.2.2 Verify that the application has implemented defenses against loss of
availability due to functionality which is time‑consuming or
resource‑demanding, based on the documented security decisions and
strategies for this.

2

15.2.3 Verify that the production environment only includes functionality that is
required for the application to function, and does not expose extraneous
functionality such as test code, sample snippets, and development
functionality.

2

15.2.4 Verify that third‑party components and all of their transitive dependencies
are included from the expected repository, whether internally owned or an
external source, and that there is no risk of a dependency confusion attack.

3

15.2.5 Verify that the application implements additional protections around parts
of the application which are documented as containing “dangerous
functionality”or using third‑party libraries considered to be “risky
components”. This could include techniques such as sandboxing,
encapsulation, containerization or network level isolation to delay and deter
attackers who compromise one part of an application from pivoting
elsewhere in the application.

3

V15.3 Defensive Coding

This section covers vulnerability types, including type juggling, prototype pollution, and others,
which result fromusing insecure coding patterns in a particular language. Somemay not be relevant
to all languages, whereas others will have language‑specific fixes or may relate to how a particular
language or framework handles a feature such as HTTP parameters. It also considers the risk of not
cryptographically validating application updates.

It also considers the risks associated with using objects to represent data items and accepting and
returning these via external APIs. In this case, the applicationmust ensure that data fields that should
not be writable are not modified by user input (mass assignment) and that the API is selective about
what data fields get returned. Where field access depends on a user’s permissions, this should be
considered in the context of thefield‑level access control requirement in theAuthorization chapter.

86

Application Security Verification Standard May 2025

Description Level

15.3.1 Verify that the application only returns the required subset of fields from a
data object. For example, it should not return an entire data object, as some
individual fields should not be accessible to users.

1

15.3.2 Verify that where the application backend makes calls to external URLs, it is
configured to not follow redirects unless it is intended functionality.

2

15.3.3 Verify that the application has countermeasures to protect against mass
assignment attacks by limiting allowed fields per controller and action, e.g.,
it is not possible to insert or update a field value when it was not intended to
be part of that action.

2

15.3.4 Verify that all proxying and middleware components transfer the user’s
original IP address correctly using trusted data fields that cannot be
manipulated by the end user, and the application and web server use this
correct value for logging and security decisions such as rate limiting, taking
into account that even the original IP address may not be reliable due to
dynamic IPs, VPNs, or corporate firewalls.

2

15.3.5 Verify that the application explicitly ensures that variables are of the correct
type and performs strict equality and comparator operations. This is to avoid
type juggling or type confusion vulnerabilities caused by the application
code making an assumption about a variable type.

2

15.3.6 Verify that JavaScript code is written in a way that prevents prototype
pollution, for example, by using Set() or Map() instead of object literals.

2

15.3.7 Verify that the application has defenses against HTTP parameter pollution
attacks, particularly if the application framework makes no distinction about
the source of request parameters (query string, body parameters, cookies, or
header fields).

2

V15.4 Safe Concurrency

Concurrency issues such as race conditions, time‑of‑check to time‑of‑use (TOCTOU) vulnerabilities,
deadlocks, livelocks, thread starvation, and improper synchronization can lead to unpredictable be‑
havior and security risks. This section includes various techniques and strategies to help mitigate
these risks.

87

Application Security Verification Standard May 2025

Description Level

15.4.1 Verify that shared objects in multi‑threaded code (such as caches, files, or
in‑memory objects accessed by multiple threads) are accessed safely by
using thread‑safe types and synchronization mechanisms like locks or
semaphores to avoid race conditions and data corruption.

3

15.4.2 Verify that checks on a resource’s state, such as its existence or permissions,
and the actions that depend on them are performed as a single atomic
operation to prevent time‑of‑check to time‑of‑use (TOCTOU) race conditions.
For example, checking if a file exists before opening it, or verifying a user’s
access before granting it.

3

15.4.3 Verify that locks are used consistently to avoid threads getting stuck, whether
by waiting on each other or retrying endlessly, and that locking logic stays
within the code responsible for managing the resource to ensure locks
cannot be inadvertently or maliciously modified by external classes or code.

3

15.4.4 Verify that resource allocation policies prevent thread starvation by ensuring
fair access to resources, such as by leveraging thread pools, allowing
lower‑priority threads to proceed within a reasonable timeframe.

3

References

For more information, see also:

• OWASP Prototype Pollution Prevention Cheat Sheet
• OWASP Mass Assignment Prevention Cheat Sheet
• OWASP CycloneDX Bill of Materials Specification
• OWASPWeb Security Testing Guide: Testing for HTTP Parameter Pollution

V16 Security Logging and Error Handling

Control Objective

Security logs are distinct from error or performance logs and are used to record security‑relevant
events such as authentication decisions, access control decisions, and attempts to bypass security
controls, such as input validation or business logic validation. Their purpose is to support detection,
response, and investigation by providing high‑signal, structured data for analysis tools like SIEMs.

Logs should not include sensitive personal data unless legally required, and any logged data must be
protected as a high‑value asset. Logging must not compromise privacy or system security. Applica‑
tions must also fail securely, avoiding unnecessary disclosure or disruption.

88

https://cheatsheetseries.owasp.org/cheatsheets/Prototype_Pollution_Prevention_Cheat_Sheet.html
https://cheatsheetseries.owasp.org/cheatsheets/Mass_Assignment_Cheat_Sheet.html
https://owasp.org/www-project-cyclonedx/
https://owasp.org/www-project-web-security-testing-guide/stable/4-Web_Application_Security_Testing/07-Input_Validation_Testing/04-Testing_for_HTTP_Parameter_Pollution

Application Security Verification Standard May 2025

For detailed implementation guidance, refer to the OWASP Cheat Sheets in the references section.

V16.1 Security Logging Documentation

This section ensures a clear and complete inventory of logging across the application stack. This is
essential for effective security monitoring, incident response, and compliance.

Description Level

16.1.1 Verify that an inventory exists documenting the logging performed at each
layer of the application’s technology stack, what events are being logged, log
formats, where that logging is stored, how it is used, how access to it is
controlled, and for how long logs are kept.

2

V16.2 General Logging

This section provides requirements to ensure that security logs are consistently structured and con‑
tain the expected metadata. The goal is to make logs machine‑readable and analyzable across dis‑
tributed systems and tools.

Naturally, security events often involve sensitive data. If such data is logged without consideration,
the logs themselves become classified and therefore subject to encryption requirements, stricter re‑
tention policies, and potential disclosure during audits.

Therefore, it is critical to log only what is necessary and to treat log data with the same care as other
sensitive assets.

The requirements below establish foundational requirements for logging metadata, synchroniza‑
tion, format, and control.

Description Level

16.2.1 Verify that each log entry includes necessary metadata (such as when,
where, who, what) that would allow for a detailed investigation of the
timeline when an event happens.

2

16.2.2 Verify that time sources for all logging components are synchronized, and
that timestamps in security event metadata use UTC or include an explicit
time zone offset. UTC is recommended to ensure consistency across
distributed systems and to prevent confusion during daylight saving time
transitions.

2

16.2.3 Verify that the application only stores or broadcasts logs to the files and
services that are documented in the log inventory.

2

89

Application Security Verification Standard May 2025

Description Level

16.2.4 Verify that logs can be read and correlated by the log processor that is in use,
preferably by using a common logging format.

2

16.2.5 Verify that when logging sensitive data, the application enforces logging
based on the data’s protection level. For example, it may not be allowed to
log certain data, such as credentials or payment details. Other data, such as
session tokens, may only be logged by being hashed or masked, either in full
or partially.

2

V16.3 Security Events

This section defines requirements for logging security‑relevant events within the application. Cap‑
turing these events is critical for detecting suspicious behavior, supporting investigations, and ful‑
filling compliance obligations.

This section outlines the types of events that should be logged but does not attempt to provide ex‑
haustive detail. Each application has unique risk factors and operational context.

Note that while ASVS includes logging of security events in scope, alerting and correlation (e.g., SIEM
rules or monitoring infrastructure) are considered out of scope and are handled by operational and
monitoring systems.

Description Level

16.3.1 Verify that all authentication operations are logged, including successful and
unsuccessful attempts. Additional metadata, such as the type of
authentication or factors used, should also be collected.

2

16.3.2 Verify that failed authorization attempts are logged. For L3, this must
include logging all authorization decisions, including logging when sensitive
data is accessed (without logging the sensitive data itself).

2

16.3.3 Verify that the application logs the security events that are defined in the
documentation and also logs attempts to bypass the security controls, such
as input validation, business logic, and anti‑automation.

2

16.3.4 Verify that the application logs unexpected errors and security control
failures such as backend TLS failures.

2

90

Application Security Verification Standard May 2025

V16.4 Log Protection

Logs are valuable forensic artifacts and must be protected. If logs can be easily modified or deleted,
they lose their integrity and become unreliable for incident investigations or legal proceedings. Logs
may expose internal application behavior or sensitivemetadata, making them an attractive target for
attackers.

This section defines requirements to ensure that logs are protected from unauthorized access, tam‑
pering, and disclosure, and that they are safely transmitted and stored in secure, isolated systems.

Description Level

16.4.1 Verify that all logging components appropriately encode data to prevent log
injection.

2

16.4.2 Verify that logs are protected from unauthorized access and cannot be
modified.

2

16.4.3 Verify that logs are securely transmitted to a logically separate system for
analysis, detection, alerting, and escalation. The aim is to ensure that if the
application is breached, the logs are not compromised.

2

V16.5 Error Handling

This section defines requirements to ensure that applications fail gracefully and securely without
disclosing sensitive internal details.

Description Level

16.5.1 Verify that a generic message is returned to the consumer when an
unexpected or security‑sensitive error occurs, ensuring no exposure of
sensitive internal system data such as stack traces, queries, secret keys, and
tokens.

2

16.5.2 Verify that the application continues to operate securely when external
resource access fails, for example, by using patterns such as circuit breakers
or graceful degradation.

2

16.5.3 Verify that the application fails gracefully and securely, including when an
exception occurs, preventing fail‑open conditions such as processing a
transaction despite errors resulting from validation logic.

2

91

Application Security Verification Standard May 2025

Description Level

16.5.4 Verify that a “last resort”error handler is defined which will catch all
unhandled exceptions. This is both to avoid losing error details that must go
to log files and to ensure that an error does not take down the entire
application process, leading to a loss of availability.

3

Note: Certain languages, (including Swift, Go, and through common design practice, many func‑
tional languages,) do not support exceptions or last‑resort event handlers. In this case, architects
and developers should use a pattern, language, or framework‑friendly way to ensure that applica‑
tions can securely handle exceptional, unexpected, or security‑related events.

References

For more information, see also:

• OWASPWeb Security Testing Guide: Testing for Error Handling
• OWASP Authentication Cheat Sheet section about error messages
• OWASP Logging Cheat Sheet
• OWASP Application Logging Vocabulary Cheat Sheet

V17WebRTC

Control Objective

WebReal‑TimeCommunication (WebRTC) enables real‑time voice, video, and data exchange inmod‑
ern applications. As adoption increases, securing WebRTC infrastructure becomes critical. This
section provides security requirements for stakeholders who develop, host, or integrate WebRTC
systems.

The WebRTC market can be broadly categorized into three segments:

1. Product Developers: Proprietary and open‑source vendors that create and supply WebRTC
products and solutions. Their focus is on developing robust and secure WebRTC technologies
that can be used by others.

2. Communication Platforms as a Service (CPaaS): Providers that offer APIs, SDKs, and the nec‑
essary infrastructure or platforms to enableWebRTC functionalities. CPaaS providers may use
products from the first category or develop their ownWebRTC software to offer these services.

3. Service Providers: Organizations that leverage products from product developers or CPaaS
providers, or develop their own WebRTC solutions. They create and implement applications

92

https://owasp.org/www-project-web-security-testing-guide/stable/4-Web_Application_Security_Testing/08-Testing_for_Error_Handling/README
https://cheatsheetseries.owasp.org/cheatsheets/Authentication_Cheat_Sheet.html#authentication-and-error-messages
https://cheatsheetseries.owasp.org/cheatsheets/Logging_Cheat_Sheet.html
https://cheatsheetseries.owasp.org/cheatsheets/Logging_Vocabulary_Cheat_Sheet.html

Application Security Verification Standard May 2025

for online conferencing, healthcare, e‑learning, and other domains where real‑time commu‑
nication is crucial.

The security requirements outlined here are primarily focused on Product Developers, CPaaS, and
Service Providers who:

• Utilize open‑source solutions to build their WebRTC applications.
• Use commercial WebRTC products as part of their infrastructure.
• Use internally developed WebRTC solutions or integrate various components into a cohesive
service offering.

It is important to note that these security requirements do not apply to developers who exclusively
use SDKs and APIs provided by CPaaS vendors. For such developers, the CPaaS providers are typi‑
cally responsible for most of the underlying security concerns within their platforms, and a generic
security standard like ASVS may not fully address their needs.

V17.1 TURN Server

This section defines security requirements for systems that operate their own TURN (Traversal Us‑
ing Relays around NAT) servers. TURN servers assist in relaying media in restrictive network envi‑
ronments but can pose risks if misconfigured. These controls focus on secure address filtering and
protection against resource exhaustion.

Description Level

17.1.1 Verify that the Traversal Using Relays around NAT (TURN) service only
allows access to IP addresses that are not reserved for special purposes (e.g.,
internal networks, broadcast, loopback). Note that this applies to both IPv4
and IPv6 addresses.

2

17.1.2 Verify that the Traversal Using Relays around NAT (TURN) service is not
susceptible to resource exhaustion when legitimate users attempt to open a
large number of ports on the TURN server.

3

V17.2 Media

These requirements only apply to systems that host their ownWebRTCmedia servers, such as Selec‑
tive ForwardingUnits (SFUs),Multipoint ControlUnits (MCUs), recording servers, or gateway servers.
Media servers handle and distributemedia streams,making their security critical to protect commu‑
nication between peers. Safeguarding media streams is paramount in WebRTC applications to pre‑
vent eavesdropping, tampering, and denial‑of‑service attacks that could compromise user privacy
and communication quality.

93

Application Security Verification Standard May 2025

In particular, it is necessary to implement protections against flood attacks such as rate limiting, val‑
idating timestamps, using synchronized clocks to match real‑time intervals, and managing buffers
to prevent overflow and maintain proper timing. If packets for a particular media session arrive too
quickly, excess packets should be dropped. It is also important to protect the system frommalformed
packets by implementing input validation, safely handling integer overflows, preventing buffer over‑
flows, and employing other robust error‑handling techniques.

Systems that rely solely on peer‑to‑peer media communication between web browsers, without the
involvement of intermediate media servers, are excluded from these specific media‑related security
requirements.

This section refers to the use of DatagramTransport Layer Security (DTLS) in the context ofWebRTC.
A requirement related to having a documented policy for themanagement of cryptographic keys can
be found in the “Cryptography”chapter. Information on approved cryptographic methods can be
found either in the Cryptography Appendix of the ASVS or in documents such as NIST SP 800‑52
Rev. 2 or BSI TR‑02102‑2 (Version 2025‑01).

Description Level

17.2.1 Verify that the key for the Datagram Transport Layer Security (DTLS)
certificate is managed and protected based on the documented policy for
management of cryptographic keys.

2

17.2.2 Verify that the media server is configured to use and support approved
Datagram Transport Layer Security (DTLS) cipher suites and a secure
protection profile for the DTLS Extension for establishing keys for the Secure
Real‑time Transport Protocol (DTLS‑SRTP).

2

17.2.3 Verify that Secure Real‑time Transport Protocol (SRTP) authentication is
checked at the media server to prevent Real‑time Transport Protocol (RTP)
injection attacks from leading to either a Denial of Service condition or
audio or video media insertion into media streams.

2

17.2.4 Verify that the media server is able to continue processing incoming media
traffic when encountering malformed Secure Real‑time Transport Protocol
(SRTP) packets.

2

17.2.5 Verify that the media server is able to continue processing incoming media
traffic during a flood of Secure Real‑time Transport Protocol (SRTP) packets
from legitimate users.

3

17.2.6 Verify that the media server is not susceptible to the “ClientHello”Race
Condition vulnerability in Datagram Transport Layer Security (DTLS) by
checking if the media server is publicly known to be vulnerable or by
performing the race condition test.

3

94

Application Security Verification Standard May 2025

Description Level

17.2.7 Verify that any audio or video recording mechanisms associated with the
media server are able to continue processing incoming media traffic during
a flood of Secure Real‑time Transport Protocol (SRTP) packets from
legitimate users.

3

17.2.8 Verify that the Datagram Transport Layer Security (DTLS) certificate is
checked against the Session Description Protocol (SDP) fingerprint attribute,
terminating the media stream if the check fails, to ensure the authenticity of
the media stream.

3

V17.3 Signaling

This section defines requirements for systems that operate their ownWebRTC signaling servers. Sig‑
naling coordinates peer‑to‑peer communication andmust be resilient against attacks that could dis‑
rupt session establishment or control.

To ensure secure signaling, systems must handle malformed inputs gracefully and remain available
under load.

Description Level

17.3.1 Verify that the signaling server is able to continue processing legitimate
incoming signaling messages during a flood attack. This should be achieved
by implementing rate limiting at the signaling level.

2

17.3.2 Verify that the signaling server is able to continue processing legitimate
signaling messages when encountering malformed signaling message that
could cause a denial of service condition. This could include implementing
input validation, safely handling integer overflows, preventing buffer
overflows, and employing other robust error‑handling techniques.

2

References

For more information, see also:

• TheWebRTC DTLS ClientHello DoS is best documented at Enable Security’s blog post aimed at
security professionals and the associated white paper aimed at WebRTC developers

• RFC 3550 ‑ RTP: A Transport Protocol for Real‑Time Applications
• RFC 3711 ‑ The Secure Real‑time Transport Protocol (SRTP)
• RFC5764 ‑DatagramTransport Layer Security (DTLS) Extension toEstablishKeys for the Secure
Real‑time Transport Protocol (SRTP))

95

https://www.enablesecurity.com/blog/novel-dos-vulnerability-affecting-webrtc-media-servers/
https://www.enablesecurity.com/blog/novel-dos-vulnerability-affecting-webrtc-media-servers/
https://www.enablesecurity.com/blog/webrtc-hello-race-conditions-paper/
https://www.rfc-editor.org/rfc/rfc3550
https://datatracker.ietf.org/doc/html/rfc3711
https://datatracker.ietf.org/doc/html/rfc5764
https://datatracker.ietf.org/doc/html/rfc5764

Application Security Verification Standard May 2025

• RFC 8825 ‑ Overview: Real‑Time Protocols for Browser‑Based Applications
• RFC 8826 ‑ Security Considerations for WebRTC
• RFC 8827 ‑ WebRTC Security Architecture
• DTLS‑SRTP Protection Profiles

Appendix A: Glossary

• AbsoluteMaximumSession Lifetime –Also referred to as “Overall Timeout”by NIST, this is the
maximal amount of time a session can remain active following authentication regardless of
user interaction. This is a component of session expiration.

• Allowlist –A list of permitted data or operations, for example, a list of characters that are al‑
lowed to perform input validation.

• Anti‑forgery token –A mechanism by which one or more tokens are passed in a request and
validated by the application server to ensure that the request has come from an expected end‑
point.

• Application Security –Application‑level security focuses on the analysis of components that
comprise the application layer of the Open Systems Interconnection Reference Model (OSI
Model), rather than focusing on for example the underlying operating system or connected
networks.

• Application Security Verification –The technical assessment of an application against the
OWASP ASVS.

• Application SecurityVerificationReport –A report that documents the overall results and sup‑
porting analysis produced by the verifier for a particular application.

• Authentication –The verification of the claimed identity of an application user.
• AutomatedVerification –The use of automated tools (either dynamic analysis tools, static anal‑
ysis tools, or both) that use vulnerability signatures to find problems.

• Black box testing –Amethod of software testing that examines the functionality of an applica‑
tion without peering into its internal structures or workings.

• Common Weakness Enumeration (CWE) –A community‑developed list of common software
security weaknesses. It serves as a common language, a measuring stick for software security
tools, and a baseline for weakness identification, mitigation, and prevention efforts.

• Component –A self‑contained unit of code, with associated disk and network interfaces that
communicates with other components.

• Credential Service Provider (CSP) –Also called an Identity Provider (IdP). A source of user data
which may be used as an authentication source by other applications.

• Cross‑Site Script Inclusion (XSSI) ‑ A variant of Cross‑Site Scripting (XSS) attack inwhich aweb
application retrieves malicious code from an external resource and includes that code as part
of its own content.

• Cross‑Site Scripting (XSS) –A security vulnerability typically found in web applications allow‑
ing the injection of client‑side scripts into content.

96

https://www.rfc-editor.org/info/rfc8825
https://www.rfc-editor.org/info/rfc8826
https://www.rfc-editor.org/info/rfc8827
https://www.iana.org/assignments/srtp-protection/srtp-protection.xhtml

Application Security Verification Standard May 2025

• Cryptographicmodule –Hardware, software, and/or firmware that implements cryptographic
algorithms and/or generates cryptographic keys.

• Cryptographically secure pseudo‑random number generator (CSPRNG) ‑ A pseudorandom
number generator with properties that make it suitable for use in cryptography, also referred
to as a cryptographic random number generator (CRNG).

• Datagram Transport Layer Security (DTLS) –A cryptographic protocol which provides com‑
munication security over a network connection. It is based on the TLS protocol but adapted for
protecting datagram‑oriented protocols (usually over UDP). Defined in RFC 9147 for DTLS 1.3.

• Datagram Transport Layer Security Extension to Establish Keys for the Secure Real‑time
Transport Protocol (DTLS‑SRTP) –A mechanism for using a DTLS handshake for establishing
key material for a SRTP session. Defined in RFC 5764.

• Design Verification –The technical assessment of the security architecture of an application.
• DynamicApplication Security Testing (DAST) –Technologies are designed to detect conditions
indicative of a security vulnerability in an application in its running state.

• Dynamic Verification –The use of automated tools that use vulnerability signatures to find
problems during the execution of an application.

• Fast IDentity Online (FIDO) –A set of authentication standards that allow a variety of different
authentication methods to be used including biometrics, Trusted Platform Modules (TPMs),
USB security tokens, etc.

• Hardware Security Module (HSM) –Hardware component that stores cryptographic keys and
other secrets in a protected manner.

• Hibernate Query Language (HQL) –A query language that is similar in appearance to SQL used
by the Hibernate ORM library.

• HTTPStrict Transport Security (HSTS) –An policywhich instructs the browser to only connect
to the domain returning the header via TLS and when a valid certificate is presented. It is
activated using the Strict‑Transport‑Security response header field.

• HyperText Transfer Protocol (HTTP) –An application protocol for distributed, collaborative,
hypermedia information systems. It is the foundation of data communication for the World
Wide Web.

• HyperText Transfer Protocol over SSL/TLS (HTTPS) –A method of securing HTTP communi‑
cation by encrypting it using Transport Layer Security (TLS).

• Identity Provider (IdP) –Also called a Credential Service Provider (CSP) in NIST references. An
entity that provides an authentication source for other applications.

• Inactivity Timeout –This is the length of time a session can remain active in the absence of
user interaction with the application. This is a component of session expiration.

• Input Validation –The canonicalization and validation of untrusted user input.
• JSONWebToken (JWT) –RFC 7519 defines a standard for a JSONdata objectmade up of a header
sectionwhich explains how to validate the object, a body section containing a set of claims, and
a signature sectionwhich contains a digital signaturewhich can be used to validate the contents
of the body section. It is a type of self‑contained token.

• Local File Inclusion (LFI) ‑ An attack that exploits vulnerable file inclusion procedures in an

97

Application Security Verification Standard May 2025

application, leading to the inclusion of local files already present on the server.
• Malicious Code –Code introduced into an application during its development unbeknownst to
the application owner, which circumvents the application’s intended security policy. Not the
same as malware such as a virus or worm!

• Malware –Executable code that is introduced into an application during runtime without the
knowledge of the application user or administrator.

• Message authentication code (MAC) ‑ A cryptographic checksum on data, computed by aMAC
generation algorithm, that is used to provide assurance on its integrity and authenticity.

• Multi‑factor authentication (MFA) –Authentication which includes two or more of the single
factors.

• Mutual TLS (mTLS) –See TLS client authentication.
• Object‑relational Mapping (ORM) –A system used to allow a relational/table‑based database
to be referenced and queried within an application program using an application‑compatible
object model.

• One‑time Password (OTP) –A password that is uniquely generated to be used on a single occa‑
sion.

• Open Worldwide Application Security Project (OWASP) –The Open Worldwide Application
Security Project (OWASP) is a worldwide free and open community focused on improving the
security of application software. Our mission is to make application security “visible,”so that
people and organizations can make informed decisions about application security risks. See:
https://www.owasp.org/.

• Password‑Based Key Derivation Function 2 (PBKDF2) –A special one‑way algorithm used to
create a strong cryptographic key from an input text (such as a password) and an additional
random salt value and can therefore be used tomake it harder to crack a password offline if the
resulting value is stored instead of the original password.

• Public Key Infrastructure (PKI) –An arrangement that binds public keys with respective iden‑
tities of entities. The binding is established through a process of registration and issuance of
certificates at and by a certificate authority (CA).

• Public Switched TelephoneNetwork (PSTN) –The traditional telephone network that includes
both fixed‑line telephones and mobile telephones.

• Real‑time Transport Protocol (RTP) and Real‑time Transport Control Protocol (RTCP) –Two
protocols used in association for transportingmultimedia streams. Used by theWebRTC stack.
Defined in RFC 3550.

• Reference Token –A type of token that acts as a pointer or identifier to state ormetadata stored
on a server, sometimes referred to as random tokens or opaque tokens. Unlike self‑contained
tokens, which embed some of their relevant data within the token itself, reference tokens con‑
tain no intrinsic information, instead relying on the server for context. The reference token
will either be or contain a session identifier.

• Relying Party (RP) –Generally an application which is relying on a user having authenticated
against a separate authentication provider. The application relies on some sort of token or set
of signed assertions provided by that authentication provider to trust that the user is who they

98

https://www.owasp.org/

Application Security Verification Standard May 2025

say they are.
• Remote File Inclusion (RFI) ‑ An attack that exploits vulnerable inclusion procedures in the
application, resulting in the inclusion of remote files.

• Scalable Vector Graphics (SVG) –An XML‑based markup language for describing two‑
dimensional based vector graphics.

• Secure Real‑time Transport Protocol (SRTP) and Secure Real‑time Transport Control Proto‑
col (SRTCP) –A profile of the RTP and RTCP protocols providing support for message encryp‑
tion, authentication and integrity protection. Defined in RFC 3711.

• Security Architecture –An abstraction of an application’s design that identifies and describes
where and how security controls are used, and also identifies and describes the location and
sensitivity of both user and application data.

• Security Assertion Markup Language (SAML) –An open standard for single sign‑on authenti‑
cation based on passing signed assertions (usually XML objects) between the identity provider
and the relying party.

• Security Configuration –The runtime configuration of an application that affects how security
controls are used.

• Security Control –A function or component that performs a security check (e.g., an authoriza‑
tion check) or when called results in a security effect (e.g., generating an audit record).

• Security information and event management (SIEM) ‑ A system for threat detection, compli‑
ance and security incident management through the collection and analysis of security‑related
data from various sources within an organization’s IT infrastructure.

• Self‑Contained Token –A token that encapsulates one or more attributes that do not rely on
server‑side state or other external storage. These tokens ensure the authenticity and integrity
of their contained attributes, enabling secure, “stateless”information exchange across systems.
Self‑contained tokens are generally secured using cryptographic techniques, such as digital
signatures or message authentication codes (MACs), to ensure the authenticity, integrity, and
in some cases the confidentiality of its data. Common examples include SAML Assertions and
JWTs.

• Server‑side Request Forgery (SSRF) –An attack that abuses functionality on the server to read
or update internal resources. The attacker supplies ormodifies a URL, which the code running
on the server will read or submit data to.

• SessionDescriptionProtocol (SDP) –Amessage format for setting upmultimedia session (used
for example in WebRTC). Defined in RFC 4566.

• Session Identifier or Session ID –A key which identifies a stateful session stored at the back
end. Will be transfered to and from the client either as or inside a “Reference Token”.

• Session Token –A “catch‑all”phrase used in this standard to refer to the token or value used
in either stateless session mechanisms (which use a self‑contained token) or stateful session
mechanisms (which use a reference token).

• Session Traversal Utilities for NAT (STUN) –A protocol used to assist NAT traversal in order to
establish peer‑to‑peer communications. Defined in RFC 3489.

• Single‑factor authenticator –A mechanism to check that a user is authenticated. It should ei‑

99

Application Security Verification Standard May 2025

ther be something you know (memorized secrets, passwords, passphrases, PINs), something
you are (biometrics, fingerprint, face scans), or something you have (OTP tokens, a crypto‑
graphic device such as a smart card).

• Single Sign‑on Authentication (SSO) –This occurs when a user logs into one application and is
then automatically logged into other applications without having to re‑authenticate. For exam‑
ple, when logging into Google, the user will be automatically logged into other Google services
such as YouTube, Google Docs, and Gmail.

• Software bill of materials (SBOM) ‑ A structured, comprehensive list of all components, mod‑
ules, libraries, frameworks and other resources required to build or assemble a software appli‑
cation.

• Software Composition Analysis (SCA) –A set of technologies designed to analyze application
composition, dependencies, libraries and packages for security vulnerabilities of specific com‑
ponent versions in use. This is not to be confused with source‑code analysis which is now com‑
monly referred to as SAST.

• Software development lifecycle (SDLC) –The step‑by‑step process by which software is devel‑
oped going from the initial requirements to deployment and maintenance.

• SQL Injection (SQLi) –A code injection technique used to attack data‑driven applications, in
which malicious SQL statements are inserted into an entry point.

• Stateful SessionMechanism –In a stateful session mechanism, the application retains session
state at the backend which typically corresponds to a session token, generated using a cryp‑
tographically secure pseudo‑random number generator (CSPRNG), which is issued to the end
user.

• Stateless Session Mechanism –A stateless session mechanism will use a self‑contained token
which is passed to clients, and contains session information that is not necessarily storedwithin
the service which then receives and validates the token. In reality, a service will need to have
access to some session information (such as a JWT revocation list) in order to be able to enforce
required security controls.

• Static application security testing (SAST) –A set of technologies designed to analyze applica‑
tion source code, byte code and binaries for coding and design conditions that are indicative of
security vulnerabilities. SAST solutions analyze an application from the “inside out”in a non‑
running state.

• ThreatModeling –A technique consisting of developing increasingly refined security architec‑
tures to identify threat agents, security zones, security controls, and important technical and
business assets.

• Time‑of‑check to time‑of‑use (TOCTOU) –A situation where an application checks the state
of a resource before using that resource, but the resource’s state can be changed between the
check and the use. This can invalidate the results of the check and cause a situation where the
application performs invalid actions due to this state mismatch.

• Time based One‑time Passwords (TOTPs) ‑ A method of generating an OTP where the current
time acts as part of the algorithm to generate the password.

• TLS client authentication, also called Mutual TLS (mTLS) –In a standard TLS connection, a

100

Application Security Verification Standard May 2025

client can use the certificate provided by the server to validate the server’s identity. Where TLS
client authentication is used, the client also uses its own private key and certificate to allow the
server to also validate the client’s identity.

• Transport Layer Security (TLS) –Cryptographic protocols that provide communication secu‑
rity over a network connection.

• Traversal Using Relays aroundNAT (TURN) –An extension of the STUN protocol using a TURN
server as a relay when direct peer‑to‑peer connections cannot be established. Defined in RFC
8656.

• Trusted execution environment (TEE) ‑ An isolated processing environment in which applica‑
tions can be securely executed irrespective of the rest of the system.

• Trusted PlatformModule (TPM) –A type of HSM that is usually attached to a larger hardware
component such as a motherboard and acts as the “root of trust”for that system.

• Trusted Service Layer –Any trusted control enforcement point, such as amicroservice, server‑
less API, server‑side, a trusted API on a client device that has secure boot, partner or external
APIs, and so on. Trusted means that there is no concern that an untrusted user will be able to
bypass or skip the layer or controls implemented at that layer.

• Uniform Resource Identifier (URI)‑ A unique string of characters that identifies a resource,
such as webpage, mail address, places.

• UniformResource Locator (URL) –A string that specifies the location of resource on the Inter‑
net.

• UniversallyUnique Identifier (UUID) –Aunique reference number used as an identifier in soft‑
ware.

• Verifier –The person or team that is reviewing an application against the OWASP ASVS require‑
ments.

• Web Real‑Time Communication (WebRTC) –A protocol stack and associated web API used for
the transport of multimedia streams in web applications, usually in the context of teleconfer‑
encing. Based on SRTP, SRTCP, DTLS, SDP and STUN/TURN.

• WebSocket over TLS (WSS) –A practice of securing WebSocket communication by layering
WebSocket over TLS protocol.

• What You See Is What You Get (WYSIWYG) –A type of rich content editor that shows how the
content will actually look when rendered rather than showing the coding used to govern the
rendering.

• X.509 Certificate –An X.509 certificate is a digital certificate that uses the widely accepted in‑
ternational X.509 public key infrastructure (PKI) standard to verify that a public key belongs to
the user, computer or service identity contained within the certificate.

• XML eXternal Entity (XXE) –A type of XML entity that can access local or remote content via a
declared system identifier. This may lead to various injection attacks.

101

Application Security Verification Standard May 2025

Appendix B: References

The following OWASP projects are most likely to be useful to users/adopters of this standard:

OWASP Core Projects

1. OWASP Top 10 Project: https://owasp.org/www‑project‑top‑ten/
2. OWASP Web Security Testing Guide: https://owasp.org/www‑project‑web‑security‑testing‑

guide/
3. OWASP Proactive Controls: https://owasp.org/www‑project‑proactive‑controls/
4. OWASP Software Assurance Maturity Model (SAMM): https://owasp.org/www‑project‑samm/
5. OWASP Secure Headers Project: https://owasp.org/www‑project‑secure‑headers/

OWASP Cheat Sheet Series project

This project has several cheat sheets that will be relevant to different topics in the ASVS.

There is a mapping to the ASVS which can be found here: https://cheatsheetseries.owasp.org/Index
ASVS.html

Mobile Security Related Projects

1. OWASP Mobile Security Project: https://owasp.org/www‑project‑mobile‑security/
2. OWASP Mobile Top 10 Risks: https://owasp.org/www‑project‑mobile‑top‑10/
3. OWASP Mobile Security Testing Guide and Mobile Application Security Verification Standard:

https://owasp.org/www‑project‑mobile‑security‑testing‑guide/

OWASP Internet of Things related projects

1. OWASP Internet of Things Project: https://owasp.org/www‑project‑internet‑of‑things/

OWASP Serverless projects

1. OWASP Serverless Project: https://owasp.org/www‑project‑serverless‑top‑10/

Others

Similarly, the following websites are most likely to be useful to users/adopters of this standard

1. SecLists Github: https://github.com/danielmiessler/SecLists
2. MITRE CommonWeakness Enumeration: https://cwe.mitre.org/

102

https://owasp.org/www-project-top-ten/
https://owasp.org/www-project-web-security-testing-guide/
https://owasp.org/www-project-web-security-testing-guide/
https://owasp.org/www-project-proactive-controls/
https://owasp.org/www-project-samm/
https://owasp.org/www-project-secure-headers/
https://owasp.org/www-project-cheat-sheets/
https://cheatsheetseries.owasp.org/IndexASVS.html
https://cheatsheetseries.owasp.org/IndexASVS.html
https://owasp.org/www-project-mobile-security/
https://owasp.org/www-project-mobile-top-10/
https://owasp.org/www-project-mobile-security-testing-guide/
https://owasp.org/www-project-internet-of-things/
https://owasp.org/www-project-serverless-top-10/
https://github.com/danielmiessler/SecLists
https://cwe.mitre.org/

Application Security Verification Standard May 2025

3. PCI Security Standards Council: https://www.pcisecuritystandards.org/
4. PCI Data Security Standard (DSS) v3.2.1 Requirements and Security Assessment Procedures:

https://www.pcisecuritystandards.org/documents/PCI_DSS_v3‑2‑1.pdf
5. PCI Software Security Framework ‑ Secure SoftwareRequirements andAssessment Procedures:

https://www.pcisecuritystandards.org/documents/PCI‑Secure‑Software‑Standard‑v1_0.pdf
6. PCI Secure Software Lifecycle (Secure SLC) Requirements and Assessment Procedures: https:

//www.pcisecuritystandards.org/documents/PCI‑Secure‑SLC‑Standard‑v1_0.pdf
7. OWASP ASVS 4.0 Testing Guide https://github.com/BlazingWind/OWASP‑ASVS‑4.0‑testing‑

guide

Appendix C: Cryptography Standards

The “Cryptography”chapter goes beyond simply defining best practices. It aims to enhance under‑
standing of cryptography principles and encourage the adoption of more resilient, modern security
methods. This appendix provides detailed technical information regarding each requirement, com‑
plementing the overarching standards outlined in the “Cryptography”chapter.

This appendix defines the level of approval for different cryptographic mechanisms:

• Approved (A) mechanisms can be used in applications.
• Legacy mechanisms (L) should not be used in applications but might still be used for compat‑
ibility with existing legacy applications or code onyly. While the usage of such these mech‑
anisms is currently not considered to be a vulnerability in itself, they should be replaced by
more secure and future‑proof mechanisms as soon as possible.

• Disallowedmechanisms (D)must not be used because they are currently considered broken or
do not provide sufficient security.

This list may be overridden in the context of a given application for various reasons including:

• new evolutions in the field of cryptography;
• compliance with regulation.

Cryptographic Inventory and Documentation

This section provides additional information for V11.1 Cryptographic Inventory and Documenta‑
tion.

It is important to ensure that all cryptographic assets, such as algorithms, keys, and certificates, are
regularly discovered, inventoried, and assessed. For Level 3, this should include the use of static and
dynamic scanning to discover theuse of cryptography in an application. Tools such as SASTandDAST
may help with this but it is possible that dedicated tools would be needed to get more comprehensive
coverage. Freeware examples of tools include:

• CryptoMon ‑ Network Cryptography Monitor ‑ using eBPF, written in python

103

https://www.pcisecuritystandards.org/
https://www.pcisecuritystandards.org/documents/PCI_DSS_v3-2-1.pdf
https://www.pcisecuritystandards.org/documents/PCI-Secure-Software-Standard-v1_0.pdf
https://www.pcisecuritystandards.org/documents/PCI-Secure-SLC-Standard-v1_0.pdf
https://www.pcisecuritystandards.org/documents/PCI-Secure-SLC-Standard-v1_0.pdf
https://github.com/BlazingWind/OWASP-ASVS-4.0-testing-guide
https://github.com/BlazingWind/OWASP-ASVS-4.0-testing-guide
https://github.com/Santandersecurityresearch/CryptoMon

Application Security Verification Standard May 2025

• Cryptobom Forge Tool: Generating Comprehensive CBOMs from CodeQL Outputs

Equivalent Strengths of Cryptographic Parameters

The relative security strengths for various cryptographic systems are in this table (fromNIST SP 800‑
57 Part 1, p.71):

Security Strength
Symmetric Key
Algorithms Finite Field

Integer
Factorisation Elliptic Curve

<= 80 2TDEA L = 1024 N = 160 k = 1024 f = 160‑223

112 3TDEA L = 2048 N = 224 k = 2048 f = 224‑255

128 AES‑128 L = 3072 N = 256 k = 3072 f = 256‑383

192 AES‑192 L = 7680 N = 384 k = 7680 f = 384‑511

256 AES‑256 L = 15360 N = 512 k = 15360 f = 512+

Example of applications:

• Finite Field Cryptography: DSA, FFDH, MQV
• Integer Factorisation Cryptography: RSA
• Elliptic Curve Cryptography: ECDSA, EdDSA, ECDH, MQV

Note: that this section assumes that no quantum computer exists; if such a computer would exist,
the estimates for the last 3 columns would be no longer valid.

Random Values

This section provides additional information for V11.5 Random Values.

Name Version/Reference Notes Status

/dev/random Linux 4.8+ (Oct 2016),
also found in iOS,
Android, and other
Linux‑based POSIX
operating systems.
Based on RFC7539

Utilizing ChaCha20
stream. Found in iOS
SecRandomCopyBytes
and Android Secure

Random with the
correct settings
provided to each.

A

104

https://github.com/Santandersecurityresearch/cryptobom-forge
https://csrc.nist.gov/pubs/sp/800/57/pt1/r5/final
https://csrc.nist.gov/pubs/sp/800/57/pt1/r5/final
https://cwe.mitre.org/data/definitions/112.html
https://cwe.mitre.org/data/definitions/128.html
https://cwe.mitre.org/data/definitions/192.html
https://cwe.mitre.org/data/definitions/256.html
https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/commit/?id=818e607b57c94ade9824dad63a96c2ea6b21baf3
https://datatracker.ietf.org/doc/html/rfc7539
https://developer.apple.com/documentation/security/secrandomcopybytes(_:_:_:)?language=objc
https://developer.android.com/reference/java/security/SecureRandom
https://developer.android.com/reference/java/security/SecureRandom

Application Security Verification Standard May 2025

Name Version/Reference Notes Status

/dev/urandom Linux kernel’s special
file for providing
random data

Provides high‑quality,
entropy sources from
hardware randomness

A

AES-CTR-DRBG NIST SP800‑90A As used in common
implementations,

such as Windows CNG
API BCryptGenRandom

set by
BCRYPT_RNG_ALGORITHM.

A

HMAC-DRBG NIST SP800‑90A A

Hash-DRBG NIST SP800‑90A A

getentropy() OpenBSD, available in
Linux glibc 2.25+ and

macOS 10.12+

Provides secure
random bytes directly

from the kernel’s
entropy source with a
straightforward and

minimal API. It’s more
modern and avoids

pitfalls associated with
older APIs.

A

The underlying hash function used with HMAC‑DRBG or Hash‑DRBG must be approved for this us‑
age.

Cipher Algorithms

This section provides additional information for V11.3 Encryption Algorithms.

Approved cipher algorithms are listed in order of preference.

Symmetric Key Algorithms Reference Status

AES‑256 FIPS 197 A

Salsa20 Salsa 20 specification A

XChaCha20 XChaCha20 Draft A

XSalsa20 Extending the Salsa20 nonce A

105

https://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-90Ar1.pdf
https://learn.microsoft.com/en-us/windows/win32/api/bcrypt/nf-bcrypt-bcryptgenrandom
https://learn.microsoft.com/en-us/windows/win32/api/bcrypt/nf-bcrypt-bcryptgenrandom
https://learn.microsoft.com/en-us/windows/win32/seccng/cng-algorithm-identifiers
https://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-90Ar1.pdf
https://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-90Ar1.pdf
https://man.openbsd.org/getentropy.2
https://man7.org/linux/man-pages/man3/getentropy.3.html
https://support.apple.com/en-gb/guide/security/seca0c73a75b/web
https://csrc.nist.gov/pubs/fips/197/final
https://cr.yp.to/snuffle/spec.pdf
https://datatracker.ietf.org/doc/html/draft-irtf-cfrg-xchacha-03
https://cr.yp.to/snuffle/xsalsa-20110204.pdf

Application Security Verification Standard May 2025

Symmetric Key Algorithms Reference Status

ChaCha20 RFC 8439 A

AES‑192 FIPS 197 A

AES‑128 FIPS 197 L

2TDEA D

TDEA (3DES/3DEA) D

IDEA D

RC4 D

Blowfish D

ARC4 D

DES D

AES Cipher Modes

Block ciphers, such as AES, can be used with different modes of operations. Many modes of oper‑
ations, such as Electronic codebook (ECB), are insecure and must not be used. The Galois/Counter
Mode (GCM) and Counter with cipher block chaining message authentication code (CCM) modes of
operations provide authenticated encryption and should be used in modern applications.

Approved modes are listed in order of preference.

Mode Authenticated Reference Status Restriction

GCM Yes NIST SP 800‑38D A

CCM Yes NIST SP 800‑38C A

CBC No NIST SP 800‑38A L

CCM‑8 Yes D

ECB No D

CFB No D

OFB No D

CTR No D

Notes:

• All encrypted messages must be authenticated. For ANY use of CBC mode there MUST be an
associated hashingMAC algorithm to validate themessage. In general, thisMUST be applied in

106

https://www.rfc-editor.org/info/rfc8439
https://csrc.nist.gov/pubs/fips/197/final
https://csrc.nist.gov/pubs/fips/197/final
https://csrc.nist.gov/pubs/sp/800/38/d/final
https://csrc.nist.gov/pubs/sp/800/38/c/upd1/final
https://csrc.nist.gov/pubs/sp/800/38/a/final

Application Security Verification Standard May 2025

the Encrypt‑Then‑Hash method (but TLS 1.2 uses Hash‑Then‑Encrypt instead). If this cannot
be guaranteed, then CBC MUST NOT be used. The only application where encryption without
a MAC algorithm is allowed is disk encryption.

• If CBC is used, it shall be guaranteed that the verification of the padding is performed in con‑
stant time.

• When using CCM‑8, the MAC tag only has 64 bits of security. This does not conform to require‑
ment 6.2.9 which requires at least 128 bits of security.

• Disk encryption is considered out of scope for the ASVS. Therefore this appendix does not list
any approvedmethod for disk encryption. For this usage, encryption without authentication is
usually accepted and the XTS, XEX and LRWmodes are typically used.

KeyWrapping

Cryptographic key wrap (and corresponding key unwrap) is a method of protecting an existing key
by encapsulating (i.e., wrapping) it by employing an additional encryption mechanism so that the
original key is not obviously exposed, e.g., during a transfer. This additional key used to protect the
original key is referred to as the wrap key.

This operation may be performed when it is desirable to protect keys in places deemed untrustwor‑
thy, or to send sensitive keys over untrusted networks or within applications. However, serious con‑
sideration should be given to understanding the nature (e.g., the identity and the purpose) of the
original key prior to committing to a wrap/unwrap procedure as this may have repercussions for
both source and target systems/applications in terms of security and especially compliance which
may include audit trails of a key’s function (e.g., signing) as well as appropriate key storage.

Specifically, AES‑256 MUST be used for key wrapping, following NIST SP 800‑38F and considering
forward‑looking provisions against the quantum threat. Cipher modes using AES are the following,
in order of preference:

Key Wrapping Reference Status

KW NIST SP 800‑38F A

KWP NIST SP 800‑38F A

AES‑192 andAES‑128MAYbeused if theuse case demands it, but itsmotivationMUSTbedocumented
in the entity’s cryptography inventory.

Authenticated Encryption

With the exception of disk encryption, encrypted data must be protected against unauthorizedmod‑
ification using some form of authenticated encryption (AE) scheme, usually using an authenticated
encryption with associated data (AEAD) scheme.

107

https://csrc.nist.gov/pubs/sp/800/38/f/final
https://csrc.nist.gov/pubs/sp/800/38/f/final
https://csrc.nist.gov/pubs/sp/800/38/f/final

Application Security Verification Standard May 2025

The application should preferably use an approved AEAD scheme. It might alternatively combine an
approved cipher scheme and an approved MAC algorithm with a Encrypt‑then‑MAC construct.

MAC‑then‑encrypt is still allowed for compatibility with legacy applications. It is used in TLS v1.2
with old ciphers suites.

AEADmechanism Reference Status

AES‑GCM SP 800‑38D A

AES‑CCM SP 800‑38C A

ChaCha‑Poly1305 RFC 7539 A

AEGIS‑256 AEGIS: A Fast
Authenticated
Encryption
Algorithm (v1.1)

A

AEGIS‑128 AEGIS: A Fast
Authenticated
Encryption
Algorithm (v1.1)

A

AEGIS‑128L AEGIS: A Fast
Authenticated
Encryption
Algorithm (v1.1)

A

Encrypt‑then‑MAC A

MAC‑then‑encrypt L

Hash Functions

This section provides additional information for V11.4 Hashing and Hash‑based Functions.

Hash Functions for General Use Cases

The following table lists hash functions approved in general cryptographic use cases such as digital
signatures:

• Approved hash functions provide strong collision resistance and are suitable for high‑security
applications.

• Some of these algorithms offer strong resistance to attacks when used with proper crypto‑
graphic key management, and so are additionally approved for HMAC, KDF, and RBG func‑
tions.

108

https://csrc.nist.gov/pubs/sp/800/38/d/final
https://csrc.nist.gov/pubs/sp/800/38/c/upd1/final
https://datatracker.ietf.org/doc/html/rfc7539
https://competitions.cr.yp.to/round3/aegisv11.pdf
https://competitions.cr.yp.to/round3/aegisv11.pdf
https://competitions.cr.yp.to/round3/aegisv11.pdf
https://competitions.cr.yp.to/round3/aegisv11.pdf
https://competitions.cr.yp.to/round3/aegisv11.pdf
https://competitions.cr.yp.to/round3/aegisv11.pdf
https://competitions.cr.yp.to/round3/aegisv11.pdf
https://competitions.cr.yp.to/round3/aegisv11.pdf
https://competitions.cr.yp.to/round3/aegisv11.pdf
https://competitions.cr.yp.to/round3/aegisv11.pdf
https://competitions.cr.yp.to/round3/aegisv11.pdf
https://competitions.cr.yp.to/round3/aegisv11.pdf

Application Security Verification Standard May 2025

• Hash function with less than 254 bit of output have insufficient collision resistancea and must
not be used for digital signature or other applications requiring collision resistance. For other
usages, they might be used for compatibility and verification ONLY with legacy systems but
must not be used in new designs.

Hash function Reference StatusRestrictions

SHA3‑512 FIPS 202 A

SHA‑512 FIPS 180‑4 A

SHA3‑384 FIPS 202 A

SHA‑384 FIPS 180‑4 A

SHA3‑256 FIPS 202 A

SHA‑512/256 FIPS 180‑4 A

SHA‑256 FIPS 180‑4 A

SHAKE256 FIPS 202 A

BLAKE2s BLAKE2: simpler, smaller, fast as MD5 A

BLAKE2b BLAKE2: simpler, smaller, fast as MD5 A

BLAKE3 BLAKE3 one function, fast everywhere A

SHA‑224 FIPS 180‑4 L Not
suit‑
able
for
HMAC,
KDF,
RBG,
dig‑
i‑
tal
sig‑
na‑
tures

109

https://csrc.nist.gov/pubs/fips/202/final
https://csrc.nist.gov/pubs/fips/180-4/upd1/final
https://csrc.nist.gov/pubs/fips/202/final
https://csrc.nist.gov/pubs/fips/180-4/upd1/final
https://csrc.nist.gov/pubs/fips/202/final
https://csrc.nist.gov/pubs/fips/180-4/upd1/final
https://csrc.nist.gov/pubs/fips/180-4/upd1/final
https://csrc.nist.gov/pubs/fips/202/final
https://eprint.iacr.org/2013/322
https://eprint.iacr.org/2013/322
https://github.com/BLAKE3-team/BLAKE3-specs/raw/master/blake3.pdf
https://csrc.nist.gov/pubs/fips/180-4/upd1/final

Application Security Verification Standard May 2025

Hash function Reference StatusRestrictions

SHA‑512/224 FIPS 180‑4 L Not
suit‑
able
for
HMAC,
KDF,
RBG,
dig‑
i‑
tal
sig‑
na‑
tures

SHA3‑224 FIPS 202 L Not
suit‑
able
for
HMAC,
KDF,
RBG,
dig‑
i‑
tal
sig‑
na‑
tures

110

https://csrc.nist.gov/pubs/fips/180-4/upd1/final
https://csrc.nist.gov/pubs/fips/202/final

Application Security Verification Standard May 2025

Hash function Reference StatusRestrictions

SHA‑1 RFC 3174 & RFC 6194 L Not
suit‑
able
for
HMAC,
KDF,
RBG,
dig‑
i‑
tal
sig‑
na‑
tures

CRC (any
length)

D

MD4 RFC 1320 D

MD5 RFC 1321 D

Hash Functions for Password Storage

For secure password hashing, dedicated hash functions must be used. These slow‑hashing algo‑
rithmsmitigate brute‑force and dictionary attacks by increasing the computational difficulty of pass‑
word cracking.

KDF Reference Required Parameters Status

argon2id RFC 9106 t = 1: m ≥ 47104 (46 MiB), p = 1t = 2: m ≥ 19456
(19 MiB), p = 1t ≥ 3: m ≥ 12288 (12 MiB), p = 1

A

scrypt RFC 7914 p = 1: N ≥ 2^17 (128 MiB), r = 8p = 2: N ≥ 2^16
(64 MiB), r = 8p ≥ 3: N ≥ 2^15 (32 MiB), r = 8

A

bcrypt A Future‑Adaptable
Password Scheme

cost ≥ 10 A

PBKDF2‑
HMAC‑
SHA‑
512

NIST SP 800‑132, FIPS
180‑4

iterations ≥ 210,000 A

111

https://www.rfc-editor.org/info/rfc3174
https://www.rfc-editor.org/info/rfc6194
https://www.rfc-editor.org/info/rfc1320
https://www.rfc-editor.org/info/rfc1321
https://www.rfc-editor.org/info/rfc9106
https://www.rfc-editor.org/info/rfc7914
https://www.researchgate.net/publication/2519476_A_Future-Adaptable_Password_Scheme
https://www.researchgate.net/publication/2519476_A_Future-Adaptable_Password_Scheme
https://csrc.nist.gov/pubs/sp/800/132/final
https://csrc.nist.gov/pubs/fips/180-4/upd1/final
https://csrc.nist.gov/pubs/fips/180-4/upd1/final

Application Security Verification Standard May 2025

KDF Reference Required Parameters Status

PBKDF2‑
HMAC‑
SHA‑
256

NIST SP 800‑132, FIPS
180‑4

iterations ≥ 600,000 A

PBKDF2‑
HMAC‑
SHA‑1

NIST SP 800‑132, FIPS
180‑4

iterations ≥ 1,300,000 L

Approved password‑based key derivations functions can be used for password storage.

Key Derivation Functions (KDFs)

General Key Derivation Functions

KDF Reference Status

HKDF RFC 5869 A

TLS 1.2 PRF RFC 5248 L

MD5‑based
KDFs

RFC 1321 D

SHA‑1‑based
KDFs

RFC 3174 & RFC 6194 D

Password‑based Key Derivation Functions

KDF Reference Required Parameters Status

argon2id RFC 9106 t = 1: m ≥ 47104 (46 MiB), p = 1t = 2: m ≥ 19456
(19 MiB), p = 1t ≥ 3: m ≥ 12288 (12 MiB), p = 1

A

scrypt RFC 7914 p = 1: N ≥ 2^17 (128 MiB), r = 8p = 2: N ≥ 2^16
(64 MiB), r = 8p ≥ 3: N ≥ 2^15 (32 MiB), r = 8

A

PBKDF2‑
HMAC‑
SHA‑
512

NIST SP 800‑132, FIPS
180‑4

iterations ≥ 210,000 A

112

https://csrc.nist.gov/pubs/sp/800/132/final
https://csrc.nist.gov/pubs/fips/180-4/upd1/final
https://csrc.nist.gov/pubs/fips/180-4/upd1/final
https://csrc.nist.gov/pubs/sp/800/132/final
https://csrc.nist.gov/pubs/fips/180-4/upd1/final
https://csrc.nist.gov/pubs/fips/180-4/upd1/final
https://www.rfc-editor.org/info/rfc5869
https://www.rfc-editor.org/info/rfc5248
https://www.rfc-editor.org/info/rfc1321
https://www.rfc-editor.org/info/rfc3174
https://www.rfc-editor.org/info/rfc6194
https://www.rfc-editor.org/info/rfc9106
https://www.rfc-editor.org/info/rfc7914
https://csrc.nist.gov/pubs/sp/800/132/final
https://csrc.nist.gov/pubs/fips/180-4/upd1/final
https://csrc.nist.gov/pubs/fips/180-4/upd1/final

Application Security Verification Standard May 2025

KDF Reference Required Parameters Status

PBKDF2‑
HMAC‑
SHA‑
256

NIST SP 800‑132, FIPS
180‑4

iterations ≥ 600,000 A

PBKDF2‑
HMAC‑
SHA‑1

NIST SP 800‑132, FIPS
180‑4

iterations ≥ 1,300,000 L

Key Exchange Mechanisms

This section provides additional information for V11.6 Public Key Cryptography.

KEX Schemes

A security strength of 112 bits or above MUST be ensured for all Key Exchange schemes, and their
implementation MUST follow the parameter choices in the following table.

Scheme Domain Parameters Forward Secrecy Status

Finite Field Diffie‑Hellman (FFDH) L >= 3072 & N >= 256 Yes A

Elliptic Curve Diffie‑Hellman (ECDH) f >= 256‑383 Yes A

Encrypted key transport with RSA‑PKCS#1 v1.5 No D

Where the following parameters are:

• k is the key size for RSA keys.
• L is the size of the public key and N is the size of the private key for finite field cryptography.
• f is the range of key sizes for ECC.

Any new implementation MUST NOT use any scheme that is NOT compliant with NIST SP 800‑56A &
B and NIST SP 800‑77. Specifically, IKEv1 MUST NOT be used in production.

Diffie‑Hellman groups

The following groups are approved for implementations of Diffie‑Hellman key exchange. Security
strengths are documented in NIST SP 800‑56A, Appendix D, and NIST SP 800‑57 Part 1 Rev.5.

113

https://csrc.nist.gov/pubs/sp/800/132/final
https://csrc.nist.gov/pubs/fips/180-4/upd1/final
https://csrc.nist.gov/pubs/fips/180-4/upd1/final
https://csrc.nist.gov/pubs/sp/800/132/final
https://csrc.nist.gov/pubs/fips/180-4/upd1/final
https://csrc.nist.gov/pubs/fips/180-4/upd1/final
https://csrc.nist.gov/pubs/sp/800/56/a/r3/final
https://csrc.nist.gov/pubs/sp/800/56/b/r2/final
https://csrc.nist.gov/pubs/sp/800/77/r1/final
https://csrc.nist.gov/pubs/sp/800/56/a/r3/final
https://csrc.nist.gov/pubs/sp/800/57/pt1/r5/final

Application Security Verification Standard May 2025

Group Status

P‑224, secp224r1 A

P‑256, secp256r1 A

P‑384, secp384r1 A

P‑521, secp521r1 A

K‑233, sect233k1 A

K‑283, sect283k1 A

K‑409, sect409k1 A

K‑571, sect571k1 A

B‑233, sect233r1 A

B‑283, sect283r1 A

B‑409, sect409r1 A

B‑571, sect571r1 A

Curve448 A

Curve25519 A

MODP‑2048 A

MODP‑3072 A

MODP‑4096 A

MODP‑6144 A

MODP‑8192 A

ffdhe2048 A

ffdhe3072 A

ffdhe4096 A

ffdhe6144 A

ffdhe8192 A

Message Authentication Codes (MAC)

Message Authentication Codes (MACs) are cryptographic constructs used to verify the integrity and
authenticity of a message. A MAC takes a message and a secret key as inputs and produces a fixed‑
size tag (theMAC value). MACs are widely used in secure communication protocols (e.g., TLS/SSL) to
ensure that messages exchanged between parties are authentic and intact.

114

Application Security Verification Standard May 2025

MAC
Algorithm Reference Status Restrictions

HMAC‑
SHA‑256

RFC 2104 & FIPS 198‑1 A

HMAC‑
SHA‑384

RFC 2104 & FIPS 198‑1 A

HMAC‑
SHA‑512

RFC 2104 & FIPS 198‑1 A

KMAC128 NIST SP 800‑185 A

KMAC256 NIST SP 800‑185 A

BLAKE3
(keyed_hash
mode)

BLAKE3 one function, fast everywhere A

AES‑
CMAC

RFC 4493 & NIST SP 800‑38B A

AES‑
GMAC

NIST SP 800‑38D A

Poly1305‑
AES

The Poly1305‑AES message‑authentication code A

HMAC‑
SHA‑1

RFC 2104 & FIPS 198‑1 L

HMAC‑
MD5

RFC 1321 D

Digital Signatures

Signature schemes MUST use approved key sizes and parameters per NIST SP 800‑57 Part 1.

Signature Algorithm Reference Status

EdDSA (Ed25519, Ed448) RFC 8032 A

XEdDSA (Curve25519,
Curve448)

XEdDSA A

ECDSA (P‑256, P‑384, P‑521) FIPS 186‑4 A

RSA‑RSSA‑PSS RFC 8017 A

115

https://www.rfc-editor.org/info/rfc2104
https://csrc.nist.gov/pubs/fips/198-1/final
https://www.rfc-editor.org/info/rfc2104
https://csrc.nist.gov/pubs/fips/198-1/final
https://www.rfc-editor.org/info/rfc2104
https://csrc.nist.gov/pubs/fips/198-1/final
https://csrc.nist.gov/pubs/sp/800/185/final
https://csrc.nist.gov/pubs/sp/800/185/final
https://github.com/BLAKE3-team/BLAKE3-specs/raw/master/blake3.pdf
https://datatracker.ietf.org/doc/html/rfc4493
https://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-38b.pdf
https://nvlpubs.nist.gov/nistpubs/Legacy/SP/nistspecialpublication800-38d.pdf
https://cr.yp.to/mac/poly1305-20050329.pdf
https://www.rfc-editor.org/info/rfc2104
https://csrc.nist.gov/pubs/fips/198-1/final
https://www.rfc-editor.org/info/rfc1321
https://csrc.nist.gov/pubs/sp/800/57/pt1/r5/final
https://www.rfc-editor.org/info/rfc8032
https://signal.org/docs/specifications/xeddsa/
https://csrc.nist.gov/pubs/fips/186-5/final
https://www.rfc-editor.org/info/rfc8017

Application Security Verification Standard May 2025

Signature Algorithm Reference Status

RSA‑SSA‑PKCS#1 v1.5 RFC 8017 D

DSA (any key size) FIPS 186‑4 D

Post‑Quantum Encryption Standards

PQC implementations must be in line with FIPS‑203/204/205 as there is minimal hardened code nor
implementation reference yet. https://www.nist.gov/news‑events/news/2024/08/nist‑releases‑first‑3‑
finalized‑post‑quantum‑encryption‑standards

The proposed mlkem768x25519 post‑quantum hybrid TLS key agreement method is supported by
major browsers such as Firefox release 132 and Chrome release 131. It may be used in cryptographic
testing environments or when available within industry‑ or government‑approved libraries.

Appendix D: Recommendations

Introduction

Whilst preparing version 5.0 of the Application Security Verification Standard (ASVS), it became clear
that therewere a number of existing andnewly suggested items that shouldn’t be included as require‑
ments in 5.0. This may have been because they were not in scope for ASVS as per the definition for
5.0 or alternatively it was felt that while they were a good idea, they could not bemademandatory.

Not wanting to lose all these items entirely, some have been captured in this appendix.

Recommended, in‑scopemechanisms

The following items are in‑scope for ASVS. They should not be made mandatory but it is strongly
recommended to consider them as part of a secure application.

• A password strength meter should provided to help users set a stronger password.
• Create a publicly available security.txt file at the root or .well‑knowndirectory of the application
that clearly defines a link or e‑mail address for people to contact owners about security issues.

• Client‑side input validation should be enforced in addition to validation at a trusted service
layer as this provides a good opportunity to discover when someone has bypassed client‑side
controls in an attempt to attack the application.

• Prevent accidentally accessible and sensitive pages from appearing in search engines using a
robots.txt file, the X‑Robots‑Tag response header or a robots html meta tag.

• When using GraphQL, implement authorization logic at the business logic layer instead of the
GraphQL or resolver layer to avoid having to handle authorization on every separate interface.

116

https://www.rfc-editor.org/info/rfc8017
https://csrc.nist.gov/pubs/fips/186-4/final
https://csrc.nist.gov/pubs/fips/203/ipd
https://csrc.nist.gov/pubs/fips/204/ipd
https://csrc.nist.gov/pubs/fips/205/ipd
https://datatracker.ietf.org/doc/draft-kwiatkowski-tls-ecdhe-mlkem/03/
https://www.mozilla.org/en-US/firefox/132.0/releasenotes/
https://security.googleblog.com/2024/09/a-new-path-for-kyber-on-web.html

Application Security Verification Standard May 2025

References:

• More information on security.txt including a link to the RFC

Software Security principles

The following items were previously in ASVS but are not really requirements. Rather they are prin‑
ciples to consider when implementing security controls that when followed will lead to more robust
controls. These include:

• Security controls should be centralized, simple (economy of design), verifiably secure, and
reusable. This should avoid duplicate, missing, or ineffective controls.

• Wherever possible, use previously written and well‑vetted security control implementations
rather than relying on implementing controls from scratch.

• Ideally, a single access control mechanism should be used to access protected data and re‑
sources. All requests should pass through this single mechanism to avoid copy and paste or
insecure alternative paths.

• Attribute or feature‑based access control is a recommended pattern whereby the code checks
theuser’s authorization for a feature or data itemrather than just their role. Permissions should
still be allocated using roles.

Software Security processes

There are a number of security processeswhichwere removed fromASVS 5.0 but are still a good idea.
The OWASP SAMM project may be a good source for how to effectively implement these processes.
The items which were previously in ASVS include:

• Verify the use of a secure software development lifecycle that addresses security in all stages
of development.

• Verify the use of threatmodeling for every design change or sprint planning to identify threats,
plan for countermeasures, facilitate appropriate risk responses, and guide security testing.

• Verify that all user stories and features contain functional security constraints, such as “As a
user, I should be able to view and edit my profile. I should not be able to view or edit anyone
else’s profile”

• Verify availability of a secure coding checklist, security requirements, guideline, or policy to
all developers and testers.

• Verify that an ongoing process exists to ensure that the application source code is free from
backdoors, malicious code (e.g., salami attacks, logic bombs, time bombs), and undocumented
or hidden features (e.g., Easter eggs, insecure debugging tools). Complying with this section
is not possible without complete access to source code, including third‑party libraries, and is
therefore probably only suitable for applications requiring the very highest levels of security.

117

https://securitytxt.org/

Application Security Verification Standard May 2025

• Verify that mechanisms are in place to detect and respond to configuration drift in deployed
environments. This may include using immutable infrastructure, automated redeployment
from a secure baseline, or drift detection tools that compare current state against approved
configurations.

• Verify that configuration hardening is performed on all third‑party products, libraries, frame‑
works, and services as per their individual recommendations.

References:

• OWASP Threat Modeling Cheat Sheet
• OWASP Threat modeling
• OWASP Software Assurance Maturity Model Project
• Microsoft SDL

Appendix E ‑ Contributors

We gratefully acknowledge the contributions of the following people who have commented or
opened pull requests since the the release of ASVS 4.0.0.

If you are aware of any mistakes or would like your name to appear differently, please let us know.

Johan Sydseter
(sydseter)

luis servin (lfservin) Oleksii Dovydkov
(oleksiidov)

IZUKA Masahiro
(maizuka)

James Sulinski
(jsulinski)

Eli Saad (ThunderSon) kkshitish9 Andrew van der Stock
(vanderaj)

Rick M (kingthorin) Bankde Eakasit
(Bankde)

Michael Gargiullo
(mgargiullo)

Raphael Dunant
(Racater)

Cesar Kohl (cesarkohl) inaz0 Joerg Bruenner
(JoergBruenner)

David Deatherage
(securitydave)

John Carroll
(yosignals)

Jim Fenton (jimfenton) Matteo Pace (M4tteoP) Sebastien gioria
(SPoint42)

Steven van der Baan
(vdbaan)

Jeremy Bonghwan
Choi (jeremychoi)

craig‑shony Riccardo Sirigu
(ricsirigu)

Tomasz Wrobel
(tw2as)

Alena Dubeshko
(belalena)

Rafael Green
(RafaelGreen1)

mjang‑cobalt

clallier94 Kevin W. Wall (kwwall) Jordan Sherman
(jsherm‑fwdsec /
deleterepo)

Ingo Rauner
(ingo‑rauner)

118

https://cheatsheetseries.owasp.org/cheatsheets/Threat_Modeling_Cheat_Sheet.html
https://owasp.org/www-community/Application_Threat_Modeling
https://owasp.org/www-project-samm/
https://www.microsoft.com/en-us/securityengineering/sdl/
https://github.com/sydseter
https://github.com/lfservin
https://github.com/oleksiidov
https://github.com/maizuka
https://github.com/jsulinski
https://github.com/ThunderSon
https://github.com/kkshitish9
https://github.com/vanderaj
https://github.com/kingthorin
https://github.com/Bankde
https://github.com/mgargiullo
https://github.com/Racater
https://github.com/cesarkohl
https://github.com/inaz0
https://github.com/JoergBruenner
https://github.com/securitydave
https://github.com/yosignals
https://github.com/jimfenton
https://github.com/M4tteoP
https://github.com/SPoint42
https://github.com/vdbaan
https://github.com/jeremychoi
https://github.com/craig-shony
https://github.com/ricsirigu
https://github.com/tw2as
https://github.com/belalena
https://github.com/RafaelGreen1
https://github.com/mjang-cobalt
https://github.com/clallier94
https://github.com/kwwall
https://github.com/jsherm-fwdsec
https://github.com/deleterepo
https://github.com/ingo-rauner

Application Security Verification Standard May 2025

Dirk Wetter (drwetter) Moshe Zioni
(moshe‑apiiro)

Patrick Dwyer
(coderpatros)

David Clarke
(davidclarke‑au)

Takaharu Ogasa
(takaharuogasa)

Arkadii Yakovets
(arkid15r)

Motoyasu Saburi
(motoyasu‑saburi)

leirn

wet‑certitude timhemel RL Thornton
(thornshadow99)

Thomas Bandt
(aspnetde)

Roel Storms
(roelstorms)

Jeroen Willemsen
(commjoen)

anonymous‑31 Kamran Saifullah
(deFr0ggy)

Steve Springett
(stevespringett)

Spyros (northdpole) Hans Herrera
(hansphp)

Marx314

CarlosAllendes Yonah Russ (yruss972) Sander Maijers
(sanmai‑NL)

Luboš Bretschneider
(bretik)

Eva Sarafianou
(esarafianou)

ataseren Steve Thomas (Sc00bz) Dominique RIGHETTO
(righettod)

Steven van der Baan
(svdb‑ncc)

Michael Vacarella
(Aif4thah)

Tonimir Kisasondi
(tkisason)

Stefan Streichsbier
(streichsbaer)

hi‑unc1e sb3k (starbuck3000) mario‑platt Devdatta Akhawe
(devd)

Michael Gissing
(scolytus)

Jet Anderson (thatsjet) Dave Wichers
(davewichers)

Jonny Schnittger
(JonnySchnittger)

Silvia Väli (silviavali) jackgates73 1songb1rd Timur ‑ (timurozkul)

Gareth Heyes
(hackvertor)

appills suvikaartinen chaals (chaals)

DanielPharos
(AtlasHackert)

will Farrell (willfarrell) Alina Vasiljeva
(avasiljeva)

Paul McCann
(ismisepaul)

Sage (SajjadPourali) rbsec Benedikt Bauer
(mastacheata)

James Jardine
(jamesjardine)

Mark Burnett
(m8urnett)

dschwarz91 Cyber‑AppSec
(Cyber‑AppSec)

Tib3rius

BitnessWise
(bitnesswise)

damienbod
(damienbod)

Jared Meit
(jmeit‑fwdsec)

Stefan Seelmann
(sseelmann)

Brendan O’Connor
(ussjoin)

Andrei Titov (andrettv) Hans‑Petter Fjeld
(atluxity)

markehack

Neil Madden
(NeilMadden)

Michael Geramb
(mgeramb)

Osama Elnaggar
(ossie‑git)

mackowski

119

https://github.com/drwetter
https://github.com/moshe-apiiro
https://github.com/coderpatros
https://github.com/davidclarke-au
https://github.com/takaharuogasa
https://github.com/arkid15r
https://github.com/motoyasu-saburi
https://github.com/leirn
https://github.com/wet-certitude
https://github.com/timhemel
https://github.com/thornshadow99
https://github.com/aspnetde
https://github.com/roelstorms
https://github.com/commjoen
https://github.com/anonymous-31
https://github.com/deFr0ggy
https://github.com/stevespringett
https://github.com/northdpole
https://github.com/hansphp
https://github.com/Marx314
https://github.com/CarlosAllendes
https://github.com/yruss972
https://github.com/sanmai-NL
https://github.com/bretik
https://github.com/esarafianou
https://github.com/ataseren
https://github.com/Sc00bz
https://github.com/righettod
https://github.com/svdb-ncc
https://github.com/Aif4thah
https://github.com/tkisason
https://github.com/streichsbaer
https://github.com/hi-unc1e
https://github.com/starbuck3000
https://github.com/mario-platt
https://github.com/devd
https://github.com/scolytus
https://github.com/thatsjet
https://github.com/davewichers
https://github.com/JonnySchnittger
https://github.com/silviavali
https://github.com/jackgates73
https://github.com/1songb1rd
https://github.com/timurozkul
https://github.com/hackvertor
https://github.com/appills
https://github.com/suvikaartinen
https://github.com/chaals
https://github.com/AtlasHackert
https://github.com/willfarrell
https://github.com/avasiljeva
https://github.com/ismisepaul
https://github.com/SajjadPourali
https://github.com/rbsec
https://github.com/mastacheata
https://github.com/jamesjardine
https://github.com/m8urnett
https://github.com/dschwarz91
https://github.com/Cyber-AppSec
https://github.com/Tib3rius
https://github.com/bitnesswise
https://github.com/damienbod
https://github.com/jmeit-fwdsec
https://github.com/sseelmann
https://github.com/ussjoin
https://github.com/andrettv
https://github.com/atluxity
https://github.com/markehack
https://github.com/NeilMadden
https://github.com/mgeramb
https://github.com/ossie-git
https://github.com/mackowski

Application Security Verification Standard May 2025

Ravi Balla (raviballa) Hazana (hazanasec) David Means
(dmeans82)

Alexander Stein
(tohch4)

BaeSenseii
(baesenseii)

Vincent De Schutter
(VincentDS)

S Bani (sbani) Mitsuaki Akiyama
(mak1yama)

Christopher Loessl
(hashier)

victorxm Michal Rada
(michalradacz)

Veeresh Devireddy
(drveresh)

MaknaSEO darkzero2022 Liam
(LiamDobbelaere)

Frank Denis (jedisct1)

Otto Sulin (ottosulin) carllaw6885 Anders Johan
Holmefjord (aholmis)

Richard Fritsch (rfricz)

mesutgungor Scott Helme
(ScottHelme)

Carlo Reggiani
(carloreggiani)

Suyash Srivastava
(suyash5053)

Mark Potter
(markonweb)

Arjan Lamers
(alamers)

Gøran Breivik (gobrtg) flo‑blg

Guillaume Déflache
(guillaume‑d)

Toufik Airane
(toufik‑airane)

Keith Hoodlet
(securingdev)

Sinner
(SoftwareSinner)

iloving Jeroen Beckers
(TheDauntless)

Joubin Jabbari (joubin) yu fujioka (fujiokayu)

execjosh (execjosh) Alicja Kario (tomato42) Sidney Ribeiro
(srjsoftware)

Gabriel Marquet
(Gby56)

Drew Schulz
(drschulz)

bedirhan muralito Ronnie Flathers
(ropnop)

Philippe De Ryck
(philippederyck)

Malte (mal33) MazeOfThoughts Andreas Falk
(andifalk)

Javi (javixeneize) Daniel Hahn
(averell23)

borislav‑c Robin Wood
(digininja)

miro2ns Jan Dockx (jandockx) vipinsaini434 priyanshukumar397

Nat Sakimura
(sakimura)

Benjamin Häublein
(BenjaminHae)

unknown‑user‑from Ali Ramazan
TAŞDELEN (alitasdln)

Pedro Escaleira
(oEscal)

Josh (josh‑hemphill) TimWürtele (SECtim) AviD (avidouglen)

SheHacksPurple
(shehackspurple)

fcerullo‑cycubix Hector Eryx Paredes
Camacho (heryxpc)

Irene Michlin
(irene221b)

Jonah Y‑M (TG‑Techie) Dhiraj Bahroos
(bahroos)

Jef Meijvis (jefmeijvis) IzmaDoesItbeta

120

https://github.com/raviballa
https://github.com/hazanasec
https://github.com/dmeans82
https://github.com/tohch4
https://github.com/baesenseii
https://github.com/VincentDS
https://github.com/sbani
https://github.com/mak1yama
https://github.com/hashier
https://github.com/victorxm
https://github.com/michalradacz
https://github.com/drveresh
https://github.com/MaknaSEO
https://github.com/darkzero2022
https://github.com/LiamDobbelaere
https://github.com/jedisct1
https://github.com/ottosulin
https://github.com/carllaw6885
https://github.com/aholmis
https://github.com/rfricz
https://github.com/mesutgungor
https://github.com/ScottHelme
https://github.com/carloreggiani
https://github.com/suyash5053
https://github.com/markonweb
https://github.com/alamers
https://github.com/gobrtg
https://github.com/flo-blg
https://github.com/guillaume-d
https://github.com/toufik-airane
https://github.com/securingdev
https://github.com/SoftwareSinner
https://github.com/iloving
https://github.com/TheDauntless
https://github.com/joubin
https://github.com/fujiokayu
https://github.com/execjosh
https://github.com/tomato42
https://github.com/srjsoftware
https://github.com/Gby56
https://github.com/drschulz
https://github.com/bedirhan
https://github.com/muralito
https://github.com/ropnop
https://github.com/philippederyck
https://github.com/mal33
https://github.com/MazeOfThoughts
https://github.com/andifalk
https://github.com/javixeneize
https://github.com/averell23
https://github.com/borislav-c
https://github.com/digininja
https://github.com/miro2ns
https://github.com/jandockx
https://github.com/vipinsaini434
https://github.com/priyanshukumar397
https://github.com/sakimura
https://github.com/BenjaminHae
https://github.com/unknown-user-from
https://github.com/alitasdln
https://github.com/oEscal
https://github.com/josh-hemphill
https://github.com/SECtim
https://github.com/avidouglen
https://github.com/shehackspurple
https://github.com/fcerullo-cycubix
https://github.com/heryxpc
https://github.com/irene221b
https://github.com/TG-Techie
https://github.com/bahroos
https://github.com/jefmeijvis
https://github.com/IzmaDoesItbeta

Application Security Verification Standard May 2025

Abdessamad TEMMAR
(TmmmmmR)

sectroyer Soh Satoh (sohsatoh) regoravalaz

james‑t
(james‑bitherder)

Aram Hovsepyan
(aramhovsepyan)

JaimeGomezGarciaSan ValdiGit01

iwatachan (ishowta) Vinod Anandan
(VinodAnandan)

Kevin Kien
(KevinKien)

paul‑williamson‑
swoop

endergzr Radhwan Alshamamri
(Rado0z)

Grant Ongers (rewtd) Cure53 (cure53)

AliR2Linux Ads Dawson (Gang‑
GreenTemperTatum)

William Reyor
(BillReyor)

gabe (gcrow)

mascotter luissaiz Suren Manukyan
(vx‑sec)

Piotr Gliźniewicz
(pglizniewicz)

Tadeusz Wachowski
(tadeuszwachowski)

Nasir aka Nate
(andesec)

settantasette Lars Haulin (LarsH)

Terence Eden (edent) JasmineScholz Arun Sivadasan
(teavanist)

Yusuf GÜR (yusuffgur)

Troy Marshall
(troymarshall)

Tanner Prynn (tprynn) Nick K. (nickific) raoul361

Azeem Ilyas
(TheAxZim)

Evo Stamatov (avioli) Tim Potter
(timpotter87)

Gavin Ray
(GavinRay97)

monis (demideus) Marcin Hoppe
(MarcinHoppe)

Grambulf (ramshazar) Jordan Pike
(computersarebad)

Jason Rogers
(jason‑invision)

Ben Hall (benbhall) JamesPoppyCock
(jamesly123)

WhiteHackLabs
(whitehacklabs)

Alex Gaynor (alex) Filip van Laenen
(filipvanlaenen)

jeurgen GraoMelo

Andreas Kurtz (ay‑kay) Tom Tervoort
(TomTervoort)

old man (deveras) Marco Schnüriger
(marcortw)

stiiin infoseclearn
(teaminfoseclearn)

hljupkij Noe (nmarher)

Lyz (lyz‑code) Martin Riedel
(mrtnrdl)

KIM Jaesuck (tcaesvk) Barbara Schachner
(bschach)

René Reuter (AresSec) carhackpils Tyler (tyler2cr) Hugo (hasousa)

Wouter Bloeyaert
(Someniak)

Mark de Rijk
(markderijkinfosec)

Ramin (picohub) Philip D. Turner
(philipdturner)

121

https://github.com/TmmmmmR
https://github.com/sectroyer
https://github.com/sohsatoh
https://github.com/regoravalaz
https://github.com/james-bitherder
https://github.com/aramhovsepyan
https://github.com/JaimeGomezGarciaSan
https://github.com/ValdiGit01
https://github.com/ishowta
https://github.com/VinodAnandan
https://github.com/KevinKien
https://github.com/paul-williamson-swoop
https://github.com/paul-williamson-swoop
https://github.com/endergzr
https://github.com/Rado0z
https://github.com/rewtd
https://github.com/cure53
https://github.com/AliR2Linux
https://github.com/GangGreenTemperTatum
https://github.com/GangGreenTemperTatum
https://github.com/BillReyor
https://github.com/gcrow
https://github.com/mascotter
https://github.com/luissaiz
https://github.com/vx-sec
https://github.com/pglizniewicz
https://github.com/tadeuszwachowski
https://github.com/andesec
https://github.com/settantasette
https://github.com/LarsH
https://github.com/edent
https://github.com/JasmineScholz
https://github.com/teavanist
https://github.com/yusuffgur
https://github.com/troymarshall
https://github.com/tprynn
https://github.com/nickific
https://github.com/raoul361
https://github.com/TheAxZim
https://github.com/avioli
https://github.com/timpotter87
https://github.com/GavinRay97
https://github.com/demideus
https://github.com/MarcinHoppe
https://github.com/ramshazar
https://github.com/computersarebad
https://github.com/jason-invision
https://github.com/benbhall
https://github.com/jamesly123
https://github.com/whitehacklabs
https://github.com/alex
https://github.com/filipvanlaenen
https://github.com/jeurgen
https://github.com/GraoMelo
https://github.com/ay-kay
https://github.com/TomTervoort
https://github.com/deveras
https://github.com/marcortw
https://github.com/stiiin
https://github.com/teaminfoseclearn
https://github.com/hljupkij
https://github.com/nmarher
https://github.com/lyz-code
https://github.com/mrtnrdl
https://github.com/tcaesvk
https://github.com/bschach
https://github.com/AresSec
https://github.com/carhackpils
https://github.com/tyler2cr
https://github.com/hasousa
https://github.com/Someniak
https://github.com/markderijkinfosec
https://github.com/picohub
https://github.com/philipdturner

Application Security Verification Standard May 2025

Will Chatham (willc)

122

https://github.com/willc

	Frontispiece
	About the Standard
	Copyright and License
	Project Leads
	Working Group
	Other Major Contributors
	Other Contributors and Reviewers

	Preface
	Introduction
	Principles behind version 5.0
	Looking ahead

	What is the ASVS?
	Scope of the ASVS
	Application
	Security
	Verification
	Standard
	Requirement
	Documented security decisions

	Application Security Verification Levels
	Level evaluation
	Level 1
	Level 2
	Level 3
	Which level to achieve

	How to use the ASVS
	The structure of the ASVS
	Release strategy
	Flexibility with the ASVS
	How to Reference ASVS Requirements
	Forking the ASVS

	Use cases for the ASVS
	As Detailed Security Architecture Guidance
	As a Specialized Secure Coding Reference
	As a Guide for Automated Unit and Integration Tests
	For Secure Development Training
	As a Framework for Guiding the Procurement of Secure Software

	Applying ASVS in Practice

	Assessment and Certification
	OWASP’s Stance on ASVS Certifications and Trust Marks
	How to Verify ASVS Compliance
	Verification reporting
	Scope of Verification
	Verification Mechanisms

	Changes Compared to v4.x
	Introduction
	Requirement Philosophy
	Scope and Focus
	Emphasis on Security Goals Over Mechanisms
	Documented Security Decisions

	Structural Changes and New Chapters
	Removal of Direct Mappings to Other Standards
	Reduced Coupling with NIST Digital Identity Guidelines
	Moving Away from Common Weakness Enumeration (CWE)

	Rethinking Level Definitions
	Easier Entry Level
	The Fallacy of Testability
	Not Just About Risk

	V1 Encoding and Sanitization
	Control Objective
	V1.1 Encoding and Sanitization Architecture
	V1.2 Injection Prevention
	V1.3 Sanitization
	V1.4 Memory, String, and Unmanaged Code
	V1.5 Safe Deserialization
	References

	V2 Validation and Business Logic
	Control Objective
	V2.1 Validation and Business Logic Documentation
	V2.2 Input Validation
	V2.3 Business Logic Security
	V2.4 Anti-automation
	References

	V3 Web Frontend Security
	Control Objective
	V3.1 Web Frontend Security Documentation
	V3.2 Unintended Content Interpretation
	V3.3 Cookie Setup
	V3.4 Browser Security Mechanism Headers
	V3.5 Browser Origin Separation
	V3.6 External Resource Integrity
	V3.7 Other Browser Security Considerations
	References

	V4 API and Web Service
	Control Objective
	V4.1 Generic Web Service Security
	V4.2 HTTP Message Structure Validation
	V4.3 GraphQL
	V4.4 WebSocket
	References

	V5 File Handling
	Control Objective
	V5.1 File Handling Documentation
	V5.2 File Upload and Content
	V5.3 File Storage
	V5.4 File Download
	References

	V6 Authentication
	Control Objective
	V6.1 Authentication Documentation
	V6.2 Password Security
	V6.3 General Authentication Security
	V6.4 Authentication Factor Lifecycle and Recovery
	V6.5 General Multi-factor authentication requirements
	V6.6 Out-of-Band authentication mechanisms
	V6.7 Cryptographic authentication mechanism
	V6.8 Authentication with an Identity Provider
	References

	V7 Session Management
	Control Objective
	V7.1 Session Management Documentation
	V7.2 Fundamental Session Management Security
	V7.3 Session Timeout
	V7.4 Session Termination
	V7.5 Defenses Against Session Abuse
	V7.6 Federated Re-authentication
	References

	V8 Authorization
	Control Objective
	V8.1 Authorization Documentation
	V8.2 General Authorization Design
	V8.3 Operation Level Authorization
	V8.4 Other Authorization Considerations
	References

	V9 Self-contained Tokens
	Control Objective
	V9.1 Token source and integrity
	V9.2 Token content
	References

	V10 OAuth and OIDC
	Control Objective
	V10.1 Generic OAuth and OIDC Security
	V10.2 OAuth Client
	V10.3 OAuth Resource Server
	V10.4 OAuth Authorization Server
	V10.5 OIDC Client
	V10.6 OpenID Provider
	V10.7 Consent Management
	References

	V11 Cryptography
	Control Objective
	V11.1 Cryptographic Inventory and Documentation
	V11.2 Secure Cryptography Implementation
	V11.3 Encryption Algorithms
	V11.4 Hashing and Hash-based Functions
	V11.5 Random Values
	V11.6 Public Key Cryptography
	V11.7 In-Use Data Cryptography
	References

	V12 Secure Communication
	Control Objective
	V12.1 General TLS Security Guidance
	V12.2 HTTPS Communication with External Facing Services
	V12.3 General Service to Service Communication Security
	References

	V13 Configuration
	Control Objective
	V13.1 Configuration Documentation
	V13.2 Backend Communication Configuration
	V13.3 Secret Management
	V13.4 Unintended Information Leakage
	References

	V14 Data Protection
	Control Objective
	V14.1 Data Protection Documentation
	V14.2 General Data Protection
	V14.3 Client-side Data Protection
	References

	V15 Secure Coding and Architecture
	Control Objective
	V15.1 Secure Coding and Architecture Documentation
	V15.2 Security Architecture and Dependencies
	V15.3 Defensive Coding
	V15.4 Safe Concurrency
	References

	V16 Security Logging and Error Handling
	Control Objective
	V16.1 Security Logging Documentation
	V16.2 General Logging
	V16.3 Security Events
	V16.4 Log Protection
	V16.5 Error Handling
	References

	V17 WebRTC
	Control Objective
	V17.1 TURN Server
	V17.2 Media
	V17.3 Signaling
	References

	Appendix A: Glossary
	Appendix B: References
	OWASP Core Projects
	OWASP Cheat Sheet Series project
	Mobile Security Related Projects
	OWASP Internet of Things related projects
	OWASP Serverless projects
	Others

	Appendix C: Cryptography Standards
	Cryptographic Inventory and Documentation
	Equivalent Strengths of Cryptographic Parameters
	Random Values
	Cipher Algorithms
	AES Cipher Modes
	Key Wrapping
	Authenticated Encryption

	Hash Functions
	Hash Functions for General Use Cases
	Hash Functions for Password Storage

	Key Derivation Functions (KDFs)
	General Key Derivation Functions
	Password-based Key Derivation Functions

	Key Exchange Mechanisms
	KEX Schemes
	Diffie-Hellman groups

	Message Authentication Codes (MAC)
	Digital Signatures
	Post-Quantum Encryption Standards

	Appendix D: Recommendations
	Introduction
	Recommended, in-scope mechanisms
	Software Security principles
	Software Security processes

	Appendix E - Contributors

